Guide to the Secure Configuration of Red Hat Enterprise Linux CoreOS 4

with profile DISA STIG for Red Hat Enterprise Linux CoreOS
This profile contains configuration checks that align to the DISA STIG for Red Hat Enterprise Linux CoreOS 4.
This guide presents a catalog of security-relevant configuration settings for Red Hat Enterprise Linux CoreOS 4. It is a rendering of content structured in the eXtensible Configuration Checklist Description Format (XCCDF) in order to support security automation. The SCAP content is is available in the scap-security-guide package which is developed at https://www.open-scap.org/security-policies/scap-security-guide.

Providing system administrators with such guidance informs them how to securely configure systems under their control in a variety of network roles. Policy makers and baseline creators can use this catalog of settings, with its associated references to higher-level security control catalogs, in order to assist them in security baseline creation. This guide is a catalog, not a checklist, and satisfaction of every item is not likely to be possible or sensible in many operational scenarios. However, the XCCDF format enables granular selection and adjustment of settings, and their association with OVAL and OCIL content provides an automated checking capability. Transformations of this document, and its associated automated checking content, are capable of providing baselines that meet a diverse set of policy objectives. Some example XCCDF Profiles, which are selections of items that form checklists and can be used as baselines, are available with this guide. They can be processed, in an automated fashion, with tools that support the Security Content Automation Protocol (SCAP). The DISA STIG, which provides required settings for US Department of Defense systems, is one example of a baseline created from this guidance.
Do not attempt to implement any of the settings in this guide without first testing them in a non-operational environment. The creators of this guidance assume no responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any other characteristic.
Profile TitleDISA STIG for Red Hat Enterprise Linux CoreOS
Profile IDxccdf_org.ssgproject.content_profile_stig-v1r1

Revision History

Current version: 0.1.73

  • draft (as of 2024-06-21)

Platforms

  • cpe:/o:redhat:enterprise_linux_coreos:4

Table of Contents

  1. System Settings
    1. Installing and Maintaining Software
    2. GRUB2 bootloader configuration
    3. Configure Syslog
    4. File Permissions and Masks
    5. SELinux
  2. Services
    1. Network Time Protocol
    2. SSH Server
    3. USBGuard daemon
  3. System Accounting with auditd
    1. Configure auditd Rules for Comprehensive Auditing
    2. Configure auditd Data Retention
    3. System Accounting with auditd

Checklist

contains 120 rules

System Settings   [ref]group

Contains rules that check correct system settings.

contains 18 rules

Installing and Maintaining Software   [ref]group

The following sections contain information on security-relevant choices during the initial operating system installation process and the setup of software updates.

contains 1 rule

Disk Partitioning   [ref]group

To ensure separation and protection of data, there are top-level system directories which should be placed on their own physical partition or logical volume. The installer's default partitioning scheme creates separate logical volumes for /, /boot, and swap.

  • If starting with any of the default layouts, check the box to \"Review and modify partitioning.\" This allows for the easy creation of additional logical volumes inside the volume group already created, though it may require making /'s logical volume smaller to create space. In general, using logical volumes is preferable to using partitions because they can be more easily adjusted later.
  • If creating a custom layout, create the partitions mentioned in the previous paragraph (which the installer will require anyway), as well as separate ones described in the following sections.
If a system has already been installed, and the default partitioning scheme was used, it is possible but nontrivial to modify it to create separate logical volumes for the directories listed above. The Logical Volume Manager (LVM) makes this possible. See the LVM HOWTO at http://tldp.org/HOWTO/LVM-HOWTO/ for more detailed information on LVM.

contains 1 rule

Ensure /var/log/audit Located On Separate Partition   [ref]rule

Audit logs are stored in the /var/log/audit directory.

Partitioning Red Hat CoreOS is a Day 1 operation and cannot be changed afterwards. For documentation on how to add a MachineConfig manifest that specifies a separate /var/log/audit partition, follow: https://docs.openshift.com/container-platform/latest/installing/installing_platform_agnostic/installing-platform-agnostic.html#installation-user-infra-machines-advanced_disk_installing-platform-agnostic

Note that the Red Hat OpenShift documentation often references a block device, such as /dev/vda. The name of the available block devices depends on the underlying infrastructure (bare metal vs cloud), and often the specific instance type. For example in AWS, some instance types have NVMe drives (/dev/nvme*), others use /dev/xvda*. You will need to look for relevant documentation for your infrastructure around this. In many cases, the simplest thing is to boot a single machine with an Ignition configuration that just gives you SSH access, and inspect the block devices via e.g. the lsblk command. For physical hardware, a good best practice is to reference devices via the /dev/disk/by-id/ or /dev/disk/by-path links.

Make absolutely certain that it is large enough to store all audit logs that will be created by the auditing daemon.

Rationale:

Placing /var/log/audit in its own partition enables better separation between audit files and other files, and helps ensure that auditing cannot be halted due to the partition running out of space.

Severity:  low

GRUB2 bootloader configuration   [ref]group

During the boot process, the boot loader is responsible for starting the execution of the kernel and passing options to it. The boot loader allows for the selection of different kernels - possibly on different partitions or media. The default Red Hat Enterprise Linux CoreOS 4 boot loader for x86 systems is called GRUB2. Options it can pass to the kernel include single-user mode, which provides root access without any authentication, and the ability to disable SELinux. To prevent local users from modifying the boot parameters and endangering security, protect the boot loader configuration with a password and ensure its configuration file's permissions are set properly.

contains 1 rule

Disable vsyscalls   [ref]rule

To disable use of virtual syscalls, add the argument vsyscall=none to all BLS (Boot Loader Specification) entries ('options' line) for the Linux operating system in /boot/loader/entries/*.conf.

Rationale:

Virtual Syscalls provide an opportunity of attack for a user who has control of the return instruction pointer.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - vsyscall=none

Configure Syslog   [ref]group

The syslog service has been the default Unix logging mechanism for many years. It has a number of downsides, including inconsistent log format, lack of authentication for received messages, and lack of authentication, encryption, or reliable transport for messages sent over a network. However, due to its long history, syslog is a de facto standard which is supported by almost all Unix applications.

In Red Hat Enterprise Linux CoreOS 4, rsyslog has replaced ksyslogd as the syslog daemon of choice, and it includes some additional security features such as reliable, connection-oriented (i.e. TCP) transmission of logs, the option to log to database formats, and the encryption of log data en route to a central logging server. This section discusses how to configure rsyslog for best effect, and how to use tools provided with the system to maintain and monitor logs.

contains 3 rules

systemd-journald   [ref]group

systemd-journald is a system service that collects and stores logging data. It creates and maintains structured, indexed journals based on logging information that is received from a variety of sources. For more information on systemd-journald and additional systemd-journald configuration options, see https://systemd.io/.

contains 3 rules

Verify Group Who Owns the system journal   [ref]rule

To properly set the group owner of /var/log/journal/.*/system.journal, run the command:

$ sudo chgrp systemd-journal /var/log/journal/.*/system.journal

Rationale:

RHCOS must protect system journal file from any type of unauthorized access by setting file group ownership.

Severity:  medium

Verify Owner on the system journal   [ref]rule

To properly set the owner of /var/log/journal/.*/system.journal, run the command:

$ sudo chown root /var/log/journal/.*/system.journal 

Rationale:

RHCOS must protect system journal file from any type of unauthorized access by setting file ownership

Severity:  medium

Verify Permissions on the system journal   [ref]rule

To properly set the permissions of /var/log/journal/.*/system.journal, run the command:

$ sudo chmod 0640 /var/log/journal/.*/system.journal

Rationale:

RHCOS must protect system journal file from any type of unauthorized access by setting file permissions.

Severity:  medium

File Permissions and Masks   [ref]group

Traditional Unix security relies heavily on file and directory permissions to prevent unauthorized users from reading or modifying files to which they should not have access.

Several of the commands in this section search filesystems for files or directories with certain characteristics, and are intended to be run on every local partition on a given system. When the variable PART appears in one of the commands below, it means that the command is intended to be run repeatedly, with the name of each local partition substituted for PART in turn.

The following command prints a list of all xfs partitions on the local system, which is the default filesystem for Red Hat Enterprise Linux CoreOS 4 installations:

$ mount -t xfs | awk '{print $3}'
For any systems that use a different local filesystem type, modify this command as appropriate.

contains 10 rules

Verify Permissions on Important Files and Directories   [ref]group

Permissions for many files on a system must be set restrictively to ensure sensitive information is properly protected. This section discusses important permission restrictions which can be verified to ensure that no harmful discrepancies have arisen.

contains 3 rules

Verify Permissions on Files within /var/log Directory   [ref]group

The /var/log directory contains files with logs of error messages in the system and should only be accessed by authorized personnel.

contains 3 rules

Verify Group Who Owns /var/log Directory   [ref]rule

To properly set the group owner of /var/log, run the command:

$ sudo chgrp root /var/log

Rationale:

The /var/log directory contains files with logs of error messages in the system and should only be accessed by authorized personnel.

Severity:  medium

Verify User Who Owns /var/log Directory   [ref]rule

To properly set the owner of /var/log, run the command:

$ sudo chown root /var/log 

Rationale:

The /var/log directory contains files with logs of error messages in the system and should only be accessed by authorized personnel.

Severity:  medium

Verify Permissions on /var/log Directory   [ref]rule

To properly set the permissions of /var/log, run the command:

$ sudo chmod 0755 /var/log

Rationale:

The /var/log directory contains files with logs of error messages in the system and should only be accessed by authorized personnel.

Severity:  medium

Restrict Dynamic Mounting and Unmounting of Filesystems   [ref]group

Linux includes a number of facilities for the automated addition and removal of filesystems on a running system. These facilities may be necessary in many environments, but this capability also carries some risk -- whether direct risk from allowing users to introduce arbitrary filesystems, or risk that software flaws in the automated mount facility itself could allow an attacker to compromise the system.

This command can be used to list the types of filesystems that are available to the currently executing kernel:

$ find /lib/modules/`uname -r`/kernel/fs -type f -name '*.ko'
If these filesystems are not required then they can be explicitly disabled in a configuratio file in /etc/modprobe.d.

contains 1 rule

Disable Modprobe Loading of USB Storage Driver   [ref]rule

To prevent USB storage devices from being used, configure the kernel module loading system to prevent automatic loading of the USB storage driver. To configure the system to prevent the usb-storage kernel module from being loaded, add the following line to the file /etc/modprobe.d/usb-storage.conf:

install usb-storage /bin/true
This will prevent the modprobe program from loading the usb-storage module, but will not prevent an administrator (or another program) from using the insmod program to load the module manually.

Rationale:

USB storage devices such as thumb drives can be used to introduce malicious software.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20usb-storage%20/bin/false%0Ablacklist%20usb-storage%0A
        mode: 0644
        path: /etc/modprobe.d/usb-storage.conf
        overwrite: true

Restrict Programs from Dangerous Execution Patterns   [ref]group

The recommendations in this section are designed to ensure that the system's features to protect against potentially dangerous program execution are activated. These protections are applied at the system initialization or kernel level, and defend against certain types of badly-configured or compromised programs.

contains 6 rules

Enable ExecShield   [ref]group

ExecShield describes kernel features that provide protection against exploitation of memory corruption errors such as buffer overflows. These features include random placement of the stack and other memory regions, prevention of execution in memory that should only hold data, and special handling of text buffers. These protections are enabled by default on 32-bit systems and controlled through sysctl variables kernel.exec-shield and kernel.randomize_va_space. On the latest 64-bit systems, kernel.exec-shield cannot be enabled or disabled with sysctl.

contains 1 rule

Enable Randomized Layout of Virtual Address Space   [ref]rule

To set the runtime status of the kernel.randomize_va_space kernel parameter, run the following command:

$ sudo sysctl -w kernel.randomize_va_space=2
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.randomize_va_space = 2

Rationale:

Address space layout randomization (ASLR) makes it more difficult for an attacker to predict the location of attack code they have introduced into a process's address space during an attempt at exploitation. Additionally, ASLR makes it more difficult for an attacker to know the location of existing code in order to re-purpose it using return oriented programming (ROP) techniques.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,kernel.randomize_va_space%3D2%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_kernel_randomize_va_space.conf
        overwrite: true

Enable Execute Disable (XD) or No Execute (NX) Support on x86 Systems   [ref]group

Recent processors in the x86 family support the ability to prevent code execution on a per memory page basis. Generically and on AMD processors, this ability is called No Execute (NX), while on Intel processors it is called Execute Disable (XD). This ability can help prevent exploitation of buffer overflow vulnerabilities and should be activated whenever possible. Extra steps must be taken to ensure that this protection is enabled, particularly on 32-bit x86 systems. Other processors, such as Itanium and POWER, have included such support since inception and the standard kernel for those platforms supports the feature. This is enabled by default on the latest Oracle Linux, Red Hat and Fedora systems if supported by the hardware.

contains 1 rule

Enable NX or XD Support in the BIOS   [ref]rule

Reboot the system and enter the BIOS or Setup configuration menu. Navigate the BIOS configuration menu and make sure that the option is enabled. The setting may be located under a Security section. Look for Execute Disable (XD) on Intel-based systems and No Execute (NX) on AMD-based systems.

Rationale:

Computers with the ability to prevent this type of code execution frequently put an option in the BIOS that will allow users to turn the feature on or off at will.

Severity:  medium

Memory Poisoning   [ref]group

Memory Poisoning consists of writing a special value to uninitialized or freed memory. Poisoning can be used as a mechanism to prevent leak of information and detection of corrupted memory.

contains 2 rules

Enable page allocator poisoning   [ref]rule

To enable poisoning of free pages, add the argument page_poison=1 to all BLS (Boot Loader Specification) entries ('options' line) for the Linux operating system in /boot/loader/entries/*.conf.

Rationale:

Poisoning writes an arbitrary value to freed pages, so any modification or reference to that page after being freed or before being initialized will be detected and prevented. This prevents many types of use-after-free vulnerabilities at little performance cost. Also prevents leak of data and detection of corrupted memory.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - page_poison=1

Enable SLUB/SLAB allocator poisoning   [ref]rule

To enable poisoning of SLUB/SLAB objects, add the argument slub_debug=P to all BLS (Boot Loader Specification) entries ('options' line) for the Linux operating system in /boot/loader/entries/*.conf.

Rationale:

Poisoning writes an arbitrary value to freed objects, so any modification or reference to that object after being freed or before being initialized will be detected and prevented. This prevents many types of use-after-free vulnerabilities at little performance cost. Also prevents leak of data and detection of corrupted memory.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - slub_debug=P

Restrict Access to Kernel Message Buffer   [ref]rule

To set the runtime status of the kernel.dmesg_restrict kernel parameter, run the following command:

$ sudo sysctl -w kernel.dmesg_restrict=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.dmesg_restrict = 1

Rationale:

Unprivileged access to the kernel syslog can expose sensitive kernel address information.

Severity:  low

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,kernel.dmesg_restrict%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_kernel_dmesg_restrict.conf
        overwrite: true

Disallow kernel profiling by unprivileged users   [ref]rule

To set the runtime status of the kernel.perf_event_paranoid kernel parameter, run the following command:

$ sudo sysctl -w kernel.perf_event_paranoid=2
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.perf_event_paranoid = 2

Rationale:

Kernel profiling can reveal sensitive information about kernel behaviour.

Severity:  low

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,kernel.perf_event_paranoid%3D2%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_kernel_perf_event_paranoid.conf
        overwrite: true

SELinux   [ref]group

SELinux is a feature of the Linux kernel which can be used to guard against misconfigured or compromised programs. SELinux enforces the idea that programs should be limited in what files they can access and what actions they can take.

The default SELinux policy, as configured on Red Hat Enterprise Linux CoreOS 4, has been sufficiently developed and debugged that it should be usable on almost any system with minimal configuration and a small amount of system administrator training. This policy prevents system services - including most of the common network-visible services such as mail servers, FTP servers, and DNS servers - from accessing files which those services have no valid reason to access. This action alone prevents a huge amount of possible damage from network attacks against services, from trojaned software, and so forth.

This guide recommends that SELinux be enabled using the default (targeted) policy on every Red Hat Enterprise Linux CoreOS 4 system, unless that system has unusual requirements which make a stronger policy appropriate.

contains 3 rules

Ensure SELinux Not Disabled in the kernel arguments   [ref]rule

SELinux can be disabled at boot time by disabling it via a kernel argument. Remove any instances of selinux=0 from the kernel arguments in that file to prevent SELinux from being disabled at boot.

Rationale:

Disabling a major host protection feature, such as SELinux, at boot time prevents it from confining system services at boot time. Further, it increases the chances that it will remain off during system operation.

Severity:  medium

Identifiers:  CCE-83899-5

References:  APP.4.4.A4, 1, 11, 12, 13, 14, 15, 16, 18, 3, 4, 5, 6, 8, 9, APO01.06, APO11.04, APO13.01, BAI03.05, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06, MEA02.01, 3.1.2, 3.7.2, CCI-000022, CCI-000032, 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e), 4.2.3.4, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, AC-3, AC-3(3)(a), DE.AE-1, ID.AM-3, PR.AC-4, PR.AC-5, PR.AC-6, PR.DS-5, PR.PT-1, PR.PT-3, PR.PT-4, SRG-APP-000233-CTR-000585, CNTR-OS-000540

Configure SELinux Policy   [ref]rule

The SELinux targeted policy is appropriate for general-purpose desktops and servers, as well as systems in many other roles. To configure the system to use this policy, add or correct the following line in /etc/selinux/config:

SELINUXTYPE=targeted
Other policies, such as mls, provide additional security labeling and greater confinement but are not compatible with many general-purpose use cases.

Rationale:

Setting the SELinux policy to targeted or a more specialized policy ensures the system will confine processes that are likely to be targeted for exploitation, such as network or system services.

Note: During the development or debugging of SELinux modules, it is common to temporarily place non-production systems in permissive mode. In such temporary cases, SELinux policies should be developed, and once work is completed, the system should be reconfigured to targeted.

Severity:  medium

Identifiers:  CCE-82532-3

References:  APP.4.4.A4, 1, 11, 12, 13, 14, 15, 16, 18, 3, 4, 5, 6, 8, 9, APO01.06, APO11.04, APO13.01, BAI03.05, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06, MEA02.01, 3.1.2, 3.7.2, CCI-002165, CCI-002696, 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e), 4.2.3.4, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CIP-003-8 R5.1.1, CIP-003-8 R5.2, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-004-6 R3.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, CIP-007-3 R6.5, AC-3, AC-3(3)(a), AU-9, SC-7(21), DE.AE-1, ID.AM-3, PR.AC-4, PR.AC-5, PR.AC-6, PR.DS-5, PR.PT-1, PR.PT-3, PR.PT-4, SRG-OS-000445-GPOS-00199, SRG-APP-000233-CTR-000585, R46, R64, 1.2.6, CNTR-OS-000540

Ensure SELinux State is Enforcing   [ref]rule

The SELinux state should be set to enforcing at system boot time. In the file /etc/selinux/config, add or correct the following line to configure the system to boot into enforcing mode:

SELINUX=enforcing

Rationale:

Setting the SELinux state to enforcing ensures SELinux is able to confine potentially compromised processes to the security policy, which is designed to prevent them from causing damage to the system or further elevating their privileges.

Severity:  high

Identifiers:  CCE-82531-5

References:  APP.4.4.A4, 1, 11, 12, 13, 14, 15, 16, 18, 3, 4, 5, 6, 8, 9, APO01.06, APO11.04, APO13.01, BAI03.05, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06, MEA02.01, 3.1.2, 3.7.2, CCI-001084, CCI-002165, CCI-002696, 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e), 4.2.3.4, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CIP-003-8 R5.1.1, CIP-003-8 R5.2, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-004-6 R3.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, CIP-007-3 R6.5, AC-3, AC-3(3)(a), AU-9, SC-7(21), DE.AE-1, ID.AM-3, PR.AC-4, PR.AC-5, PR.AC-6, PR.DS-5, PR.PT-1, PR.PT-3, PR.PT-4, SRG-OS-000445-GPOS-00199, SRG-OS-000134-GPOS-00068, R37, R79, 1.2.6, CNTR-OS-000540

Services   [ref]group

The best protection against vulnerable software is running less software. This section describes how to review the software which Red Hat Enterprise Linux CoreOS 4 installs on a system and disable software which is not needed. It then enumerates the software packages installed on a default Red Hat Enterprise Linux CoreOS 4 system and provides guidance about which ones can be safely disabled.

Red Hat Enterprise Linux CoreOS 4 provides a convenient minimal install option that essentially installs the bare necessities for a functional system. When building Red Hat Enterprise Linux CoreOS 4 systems, it is highly recommended to select the minimal packages and then build up the system from there.

contains 8 rules

Network Time Protocol   [ref]group

The Network Time Protocol is used to manage the system clock over a network. Computer clocks are not very accurate, so time will drift unpredictably on unmanaged systems. Central time protocols can be used both to ensure that time is consistent among a network of systems, and that their time is consistent with the outside world.

If every system on a network reliably reports the same time, then it is much easier to correlate log messages in case of an attack. In addition, a number of cryptographic protocols (such as Kerberos) use timestamps to prevent certain types of attacks. If your network does not have synchronized time, these protocols may be unreliable or even unusable.

Depending on the specifics of the network, global time accuracy may be just as important as local synchronization, or not very important at all. If your network is connected to the Internet, using a public timeserver (or one provided by your enterprise) provides globally accurate timestamps which may be essential in investigating or responding to an attack which originated outside of your network.

A typical network setup involves a small number of internal systems operating as NTP servers, and the remainder obtaining time information from those internal servers.

There is a choice between the daemons ntpd and chronyd, which are available from the repositories in the ntp and chrony packages respectively.

The default chronyd daemon can work well when external time references are only intermittently accesible, can perform well even when the network is congested for longer periods of time, can usually synchronize the clock faster and with better time accuracy, and quickly adapts to sudden changes in the rate of the clock, for example, due to changes in the temperature of the crystal oscillator. Chronyd should be considered for all systems which are frequently suspended or otherwise intermittently disconnected and reconnected to a network. Mobile and virtual systems for example.

The ntpd NTP daemon fully supports NTP protocol version 4 (RFC 5905), including broadcast, multicast, manycast clients and servers, and the orphan mode. It also supports extra authentication schemes based on public-key cryptography (RFC 5906). The NTP daemon (ntpd) should be considered for systems which are normally kept permanently on. Systems which are required to use broadcast or multicast IP, or to perform authentication of packets with the Autokey protocol, should consider using ntpd.

Refer to https://docs.fedoraproject.org/en-US/fedora/latest/system-administrators-guide/servers/Configuring_NTP_Using_the_chrony_Suite/ for more detailed comparison of features of chronyd and ntpd daemon features respectively, and for further guidance how to choose between the two NTP daemons.

The upstream manual pages at https://chrony-project.org/documentation.html for chronyd and http://www.ntp.org for ntpd provide additional information on the capabilities and configuration of each of the NTP daemons.

contains 2 rules

Enable the NTP Daemon   [ref]rule

As a user with administrator privileges, log into a node in the relevant pool:

$ oc debug node/$NODE_NAME
At the
sh-4.4#
prompt, run:
# chroot /host
Run the following command to determine the current status of the chronyd service:
$ sudo systemctl is-active chronyd
If the service is running, it should return the following:
active
Note: The chronyd daemon is enabled by default.

As a user with administrator privileges, log into a node in the relevant pool:
$ oc debug node/$NODE_NAME
At the
sh-4.4#
prompt, run:
# chroot /host
Run the following command to determine the current status of the ntpd service:
$ sudo systemctl is-active ntpd
If the service is running, it should return the following:
active
Note: The ntpd daemon is not enabled by default. Though as mentioned in the previous sections in certain environments the ntpd daemon might be preferred to be used rather than the chronyd one. Refer to: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-configuring_ntp_using_the_chrony_suite for guidance which NTP daemon to choose depending on the environment used.

Rationale:

Enabling some of chronyd or ntpd services ensures that the NTP daemon will be running and that the system will synchronize its time to any servers specified. This is important whether the system is configured to be a client (and synchronize only its own clock) or it is also acting as an NTP server to other systems. Synchronizing time is essential for authentication services such as Kerberos, but it is also important for maintaining accurate logs and auditing possible security breaches.

The chronyd and ntpd NTP daemons offer all of the functionality of ntpdate, which is now deprecated.

Severity:  medium

Specify a Remote NTP Server   [ref]rule

Depending on specific functional requirements of a concrete production environment, the Red Hat Enterprise Linux CoreOS 4 system can be configured to utilize the services of the chronyd NTP daemon (the default), or services of the ntpd NTP daemon. Refer to https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-configuring_ntp_using_the_chrony_suite for more detailed comparison of the features of both of the choices, and for further guidance how to choose between the two NTP daemons.
To specify a remote NTP server for time synchronization, perform the following:

  • if the system is configured to use the chronyd as the NTP daemon (the default), edit the file /etc/chrony.conf as follows,
  • if the system is configured to use the ntpd as the NTP daemon, edit the file /etc/ntp.conf as documented below.
Add or correct the following lines, substituting the IP or hostname of a remote NTP server for ntpserver:
server ntpserver
This instructs the NTP software to contact that remote server to obtain time data.

Note that if the remediation shipping with this content is being used, the MachineConfig shipped does not include reference NTP servers to point to. It is up to the admin to set these which will vary depending on the cluster's requirements.

The aforementioned remediation does include the directory /etc/chrony.d which would allow the creation of configuration files to set these servers.

If we'd like to set a configuration like the following:
pool 2.rhel.pool.ntp.org iburst

server 0.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 1.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 2.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 3.rhel.pool.ntp.org minpoll 4 maxpoll 10
This could be done with to the following manifest:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-chrony-servers
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,pool%202.rhel.pool.ntp.org%20iburst%0A%0Aserver%200.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%201.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%202.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%203.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010
        mode: 0600
        path: /etc/chrony.d/10-rhel-pool-and-servers.conf
        overwrite: true
Note that this needs to be done for each
MachineConfigPool

Rationale:

Synchronizing with an NTP server makes it possible to collate system logs from multiple sources or correlate computer events with real time events.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%20Allow%20for%20extra%20configuration%20files.%20This%20is%20useful%0A%23%20for%20admins%20specifying%20their%20own%20NTP%20servers%0Ainclude%20/etc/chrony.d/%2A.conf%0A%0A%23%20Set%20chronyd%20as%20client-only.%0Aport%200%0A%0A%23%20Disable%20chronyc%20from%20the%20network%0Acmdport%200%0A%0A%23%20Record%20the%20rate%20at%20which%20the%20system%20clock%20gains/losses%20time.%0Adriftfile%20/var/lib/chrony/drift%0A%0A%23%20Allow%20the%20system%20clock%20to%20be%20stepped%20in%20the%20first%20three%20updates%0A%23%20if%20its%20offset%20is%20larger%20than%201%20second.%0Amakestep%201.0%203%0A%0A%23%20Enable%20kernel%20synchronization%20of%20the%20real-time%20clock%20%28RTC%29.%0Artcsync%0A%0A%23%20Enable%20hardware%20timestamping%20on%20all%20interfaces%20that%20support%20it.%0A%23hwtimestamp%20%2A%0A%0A%23%20Increase%20the%20minimum%20number%20of%20selectable%20sources%20required%20to%20adjust%0A%23%20the%20system%20clock.%0A%23minsources%202%0A%0A%23%20Allow%20NTP%20client%20access%20from%20local%20network.%0A%23allow%20192.168.0.0/16%0A%0A%23%20Serve%20time%20even%20if%20not%20synchronized%20to%20a%20time%20source.%0A%23local%20stratum%2010%0A%0A%23%20Require%20authentication%20%28nts%20or%20key%20option%29%20for%20all%20NTP%20sources.%0A%23authselectmode%20require%0A%0A%23%20Specify%20file%20containing%20keys%20for%20NTP%20authentication.%0Akeyfile%20/etc/chrony.keys%0A%0A%23%20Insert/delete%20leap%20seconds%20by%20slewing%20instead%20of%20stepping.%0A%23leapsecmode%20slew%0A%0A%23%20Get%20TAI-UTC%20offset%20and%20leap%20seconds%20from%20the%20system%20tz%20database.%0Aleapsectz%20right/UTC%0A%0A%23%20Specify%20directory%20for%20log%20files.%0Alogdir%20/var/log/chrony%0A%0A%23%20Select%20which%20information%20is%20logged.%0A%23log%20measurements%20statistics%20tracking }}
        mode: 420
        overwrite: true
        path: /etc/chrony.conf
      - contents:
          source: data:,
        mode: 420
        overwrite: true
        path: /etc/chrony.d/.mco-keep
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20ntp%20server%0A%23%20%7B%7B.var_multiple_time_servers%7D%7D%20we%20have%20to%20put%20variable%20array%20name%20here%20for%20mutilines%20remediation%0A%7B%7B%24var_time_service_set_maxpoll%3A%3D.var_time_service_set_maxpoll%7D%7D%0A%7B%7Brange%20%24element%3A%3D.var_multiple_time_servers%7CtoArrayByComma%7D%7Dserver%20%7B%7B%24element%7D%7D%20minpoll%204%20maxpoll%20%7B%7B%24var_time_service_set_maxpoll%7D%7D%0A%7B%7Bend%7D%7D }}
        mode: 420
        overwrite: true
        path: /etc/chrony.d/ntp-server.conf

SSH Server   [ref]group

The SSH protocol is recommended for remote login and remote file transfer. SSH provides confidentiality and integrity for data exchanged between two systems, as well as server authentication, through the use of public key cryptography. The implementation included with the system is called OpenSSH, and more detailed documentation is available from its website, https://www.openssh.com. Its server program is called sshd and provided by the RPM package openssh-server.

contains 2 rules

Configure OpenSSH Server if Necessary   [ref]group

If the system needs to act as an SSH server, then certain changes should be made to the OpenSSH daemon configuration file /etc/ssh/sshd_config. The following recommendations can be applied to this file. See the sshd_config(5) man page for more detailed information.

contains 1 rule

Disable SSH Server If Possible   [ref]rule

Instead of using ssh to remotely log in to a cluster node, it is recommended to use oc debug The sshd service can be disabled with the following manifest:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-sshd-disable
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: sshd.service
        enabled: false
        mask: true
      - name: sshd.socket
        enabled: false
        mask: true

This will disable the sshd service in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

Red Hat Enterprise Linux CoreOS (RHCOS) is a single-purpose container operating system. RHCOS is only supported as a component of the OpenShift Container Platform. Remote management of the RHCOS nodes is performed at the OpenShift Container Platform API level. As a result, any direct remote access to the RHCOS nodes is unnecessary. Disabling the SSHD service helps reduce the number of open ports on each host.

Severity:  high

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: sshd.service
        enabled: false
        mask: true
      - name: sshd.socket
        enabled: false
        mask: true
Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: sshd.service
        enabled: false
        mask: true
      - name: sshd.socket
        enabled: false
        mask: true

USBGuard daemon   [ref]group

The USBGuard daemon enforces the USB device authorization policy for all USB devices.

contains 4 rules

Install usbguard Package   [ref]rule

The usbguard package can be installed with the following manifest:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-usbguard-install
spec:
  config:
    ignition:
      version: 3.1.0
  extensions:
    - usbguard

This will install the usbguard package in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

usbguard is a software framework that helps to protect against rogue USB devices by implementing basic whitelisting/blacklisting capabilities based on USB device attributes.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  extensions:
    - usbguard

Enable the USBGuard Service   [ref]rule

The USBGuard service should be enabled. The usbguard service can be enabled with the following manifest:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-usbguard-enable
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: usbguard.service
        enabled: true

This will enable the usbguard service in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

The usbguard service must be running in order to enforce the USB device authorization policy for all USB devices.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  annotations:
    complianceascode.io/depends-on: xccdf_org.ssgproject.content_rule_package_usbguard_installed
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: usbguard.service
        enabled: true

Log USBGuard daemon audit events using Linux Audit   [ref]rule

To configure USBGuard daemon to log via Linux Audit (as opposed directly to a file), AuditBackend option in /etc/usbguard/usbguard-daemon.conf needs to be set to LinuxAudit.

Rationale:

Using the Linux Audit logging allows for centralized trace of events.

Severity:  low

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  annotations:
    complianceascode.io/depends-on: xccdf_org.ssgproject.content_rule_package_usbguard_installed
    complianceascode.io/ocp-version: '>=4.7.0'
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %0A%23%0A%23%20Rule%20set%20file%20path.%0A%23%0A%23%20The%20USBGuard%20daemon%20will%20use%20this%20file%20to%20load%20the%20policy%0A%23%20rule%20set%20from%20it%20and%20to%20write%20new%20rules%20received%20via%20the%0A%23%20IPC%20interface.%0A%23%0A%23%20RuleFile%3D/path/to/rules.conf%0A%23%0ARuleFile%3D/etc/usbguard/rules.conf%0A%0A%23%0A%23%20Rule%20set%20folder%20path.%0A%23%0A%23%20The%20USBGuard%20daemon%20will%20use%20this%20folder%20to%20load%20the%20policy%0A%23%20rule%20set%20from%20it%20and%20to%20write%20new%20rules%20received%20via%20the%0A%23%20IPC%20interface.%20Usually%2C%20we%20set%20the%20option%20to%0A%23%20/etc/usbguard/rules.d/.%20The%20USBGuard%20daemon%20is%20supposed%20to%0A%23%20behave%20like%20any%20other%20standard%20Linux%20daemon%20therefore%20it%0A%23%20loads%20rule%20files%20in%20alpha-numeric%20order.%20File%20names%20inside%0A%23%20RuleFolder%20directory%20should%20start%20with%20a%20two-digit%20number%0A%23%20prefix%20indicating%20the%20position%2C%20in%20which%20the%20rules%20are%0A%23%20scanned%20by%20the%20daemon.%0A%23%0A%23%20RuleFolder%3D/path/to/rulesfolder/%0A%23%0ARuleFolder%3D/etc/usbguard/rules.d/%0A%0A%23%0A%23%20Implicit%20policy%20target.%0A%23%0A%23%20How%20to%20treat%20devices%20that%20don%27t%20match%20any%20rule%20in%20the%0A%23%20policy.%20One%20of%3A%0A%23%0A%23%20%2A%20allow%20%20-%20authorize%20the%20device%0A%23%20%2A%20block%20%20-%20block%20the%20device%0A%23%20%2A%20reject%20-%20remove%20the%20device%0A%23%0AImplicitPolicyTarget%3Dblock%0A%0A%23%0A%23%20Present%20device%20policy.%0A%23%0A%23%20How%20to%20treat%20devices%20that%20are%20already%20connected%20when%20the%0A%23%20daemon%20starts.%20One%20of%3A%0A%23%0A%23%20%2A%20allow%20%20%20%20%20%20%20%20-%20authorize%20every%20present%20device%0A%23%20%2A%20block%20%20%20%20%20%20%20%20-%20deauthorize%20every%20present%20device%0A%23%20%2A%20reject%20%20%20%20%20%20%20-%20remove%20every%20present%20device%0A%23%20%2A%20keep%20%20%20%20%20%20%20%20%20-%20just%20sync%20the%20internal%20state%20and%20leave%20it%0A%23%20%2A%20apply-policy%20-%20evaluate%20the%20ruleset%20for%20every%20present%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20device%0A%23%0APresentDevicePolicy%3Dapply-policy%0A%0A%23%0A%23%20Present%20controller%20policy.%0A%23%0A%23%20How%20to%20treat%20USB%20controllers%20that%20are%20already%20connected%0A%23%20when%20the%20daemon%20starts.%20One%20of%3A%0A%23%0A%23%20%2A%20allow%20%20%20%20%20%20%20%20-%20authorize%20every%20present%20device%0A%23%20%2A%20block%20%20%20%20%20%20%20%20-%20deauthorize%20every%20present%20device%0A%23%20%2A%20reject%20%20%20%20%20%20%20-%20remove%20every%20present%20device%0A%23%20%2A%20keep%20%20%20%20%20%20%20%20%20-%20just%20sync%20the%20internal%20state%20and%20leave%20it%0A%23%20%2A%20apply-policy%20-%20evaluate%20the%20ruleset%20for%20every%20present%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20device%0A%23%0APresentControllerPolicy%3Dkeep%0A%0A%23%0A%23%20Inserted%20device%20policy.%0A%23%0A%23%20How%20to%20treat%20USB%20devices%20that%20are%20already%20connected%0A%23%20%2Aafter%2A%20the%20daemon%20starts.%20One%20of%3A%0A%23%0A%23%20%2A%20block%20%20%20%20%20%20%20%20-%20deauthorize%20every%20present%20device%0A%23%20%2A%20reject%20%20%20%20%20%20%20-%20remove%20every%20present%20device%0A%23%20%2A%20apply-policy%20-%20evaluate%20the%20ruleset%20for%20every%20present%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20device%0A%23%0AInsertedDevicePolicy%3Dapply-policy%0A%0A%23%0A%23%20Control%20which%20devices%20are%20authorized%20by%20default.%0A%23%0A%23%20The%20USBGuard%20daemon%20modifies%20some%20the%20default%20authorization%20state%20attributes%0A%23%20of%20controller%20devices.%20This%20setting%2C%20enables%20you%20to%20define%20what%20value%20the%0A%23%20default%20authorization%20is%20set%20to.%0A%23%0A%23%20%2A%20keep%20%20%20%20%20%20%20%20%20-%20do%20not%20change%20the%20authorization%20state%0A%23%20%2A%20none%20%20%20%20%20%20%20%20%20-%20every%20new%20device%20starts%20out%20deauthorized%0A%23%20%2A%20all%20%20%20%20%20%20%20%20%20%20-%20every%20new%20device%20starts%20out%20authorized%0A%23%20%2A%20internal%20%20%20%20%20-%20internal%20devices%20start%20out%20authorized%2C%20external%20devices%20start%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20out%20deauthorized%20%28this%20requires%20the%20ACPI%20tables%20to%20properly%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20label%20internal%20devices%2C%20and%20kernel%20support%29%0A%23%0A%23AuthorizedDefault%3Dnone%0A%0A%23%0A%23%20Restore%20controller%20device%20state.%0A%23%0A%23%20The%20USBGuard%20daemon%20modifies%20some%20attributes%20of%20controller%0A%23%20devices%20like%20the%20default%20authorization%20state%20of%20new%20child%20device%0A%23%20instances.%20Using%20this%20setting%2C%20you%20can%20control%20whether%20the%0A%23%20daemon%20will%20try%20to%20restore%20the%20attribute%20values%20to%20the%20state%0A%23%20before%20modification%20on%20shutdown.%0A%23%0A%23%20SECURITY%20CONSIDERATIONS%3A%20If%20set%20to%20true%2C%20the%20USB%20authorization%0A%23%20policy%20could%20be%20bypassed%20by%20performing%20some%20sort%20of%20attack%20on%20the%0A%23%20daemon%20%28via%20a%20local%20exploit%20or%20via%20a%20USB%20device%29%20to%20make%20it%20shutdown%0A%23%20and%20restore%20to%20the%20operating-system%20default%20state%20%28known%20to%20be%20permissive%29.%0A%23%0ARestoreControllerDeviceState%3Dfalse%0A%0A%23%0A%23%20Device%20manager%20backend%0A%23%0A%23%20Which%20device%20manager%20backend%20implementation%20to%20use.%20One%20of%3A%0A%23%0A%23%20%2A%20uevent%20%20%20-%20Netlink%20based%20implementation%20which%20uses%20sysfs%20to%20scan%20for%20present%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20devices%20and%20an%20uevent%20netlink%20socket%20for%20receiving%20USB%20device%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20related%20events.%0A%23%20%2A%20umockdev%20-%20umockdev%20based%20device%20manager%20capable%20of%20simulating%20devices%20based%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20on%20umockdev-record%20files.%20Useful%20for%20testing.%0A%23%0ADeviceManagerBackend%3Duevent%0A%0A%23%21%21%21%20WARNING%3A%20It%27s%20good%20practice%20to%20set%20at%20least%20one%20of%20the%20%21%21%21%0A%23%21%21%21%20%20%20%20%20%20%20%20%20%20two%20options%20bellow.%20If%20none%20of%20them%20are%20set%2C%20%20%21%21%21%0A%23%21%21%21%20%20%20%20%20%20%20%20%20%20the%20daemon%20will%20accept%20IPC%20connections%20from%20%20%20%21%21%21%0A%23%21%21%21%20%20%20%20%20%20%20%20%20%20anyone%2C%20thus%20allowing%20anyone%20to%20modify%20the%20%20%20%20%21%21%21%0A%23%21%21%21%20%20%20%20%20%20%20%20%20%20rule%20set%20and%20%28de%29authorize%20USB%20devices.%20%20%20%20%20%20%20%21%21%21%0A%0A%23%0A%23%20Users%20allowed%20to%20use%20the%20IPC%20interface.%0A%23%0A%23%20A%20space%20delimited%20list%20of%20usernames%20that%20the%20daemon%20will%0A%23%20accept%20IPC%20connections%20from.%0A%23%0A%23%20IPCAllowedUsers%3Dusername1%20username2%20...%0A%23%0AIPCAllowedUsers%3Droot%0A%0A%23%0A%23%20Groups%20allowed%20to%20use%20the%20IPC%20interface.%0A%23%0A%23%20A%20space%20delimited%20list%20of%20groupnames%20that%20the%20daemon%20will%0A%23%20accept%20IPC%20connections%20from.%0A%23%0A%23%20IPCAllowedGroups%3Dgroupname1%20groupname2%20...%0A%23%0AIPCAllowedGroups%3Dwheel%0A%0A%23%0A%23%20IPC%20access%20control%20definition%20files%20path.%0A%23%0A%23%20The%20files%20at%20this%20location%20will%20be%20interpreted%20by%20the%20daemon%0A%23%20as%20access%20control%20definition%20files.%20The%20%28base%29name%20of%20a%20file%0A%23%20should%20be%20in%20the%20form%3A%0A%23%0A%23%20%20%20%5Buser%5D%5B%3A%3Cgroup%3E%5D%0A%23%0A%23%20and%20should%20contain%20lines%20in%20the%20form%3A%0A%23%0A%23%20%20%20%3Csection%3E%3D%5Bprivilege%5D%20...%0A%23%0A%23%20This%20way%20each%20file%20defines%20who%20is%20able%20to%20connect%20to%20the%20IPC%0A%23%20bus%20and%20what%20privileges%20he%20has.%0A%23%0AIPCAccessControlFiles%3D/etc/usbguard/IPCAccessControl.d/%0A%0A%23%0A%23%20Generate%20device%20specific%20rules%20including%20the%20%22via-port%22%0A%23%20attribute.%0A%23%0A%23%20This%20option%20modifies%20the%20behavior%20of%20the%20allowDevice%0A%23%20action.%20When%20instructed%20to%20generate%20a%20permanent%20rule%2C%0A%23%20the%20action%20can%20generate%20a%20port%20specific%20rule.%20Because%0A%23%20some%20systems%20have%20unstable%20port%20numbering%2C%20the%20generated%0A%23%20rule%20might%20not%20match%20the%20device%20after%20rebooting%20the%20system.%0A%23%0A%23%20If%20set%20to%20false%2C%20the%20generated%20rule%20will%20still%20contain%0A%23%20the%20%22parent-hash%22%20attribute%20which%20also%20defines%20an%20association%0A%23%20to%20the%20parent%20device.%20See%20usbguard-rules.conf%285%29%20for%20more%0A%23%20details.%0A%23%0ADeviceRulesWithPort%3Dfalse%0A%0A%23%0A%23%20USBGuard%20Audit%20events%20log%20backend%0A%23%0A%23%20One%20of%3A%0A%23%0A%23%20%2A%20FileAudit%20-%20Log%20audit%20events%20into%20a%20file%20specified%20by%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20AuditFilePath%20setting%20%28see%20below%29%0A%23%20%2A%20LinuxAudit%20-%20Log%20audit%20events%20using%20the%20Linux%20Audit%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20subsystem%20%28using%20audit_log_user_message%29%0A%23%0AAuditBackend%3DLinuxAudit%0A%0A%23%0A%23%20USBGuard%20audit%20events%20log%20file%20path.%0A%23%0A%23AuditFilePath%3D/var/log/usbguard/usbguard-audit.log%0A%0A%23%0A%23%20Hides%20personally%20identifiable%20information%20such%20as%20device%20serial%20numbers%20and%0A%23%20hashes%20of%20descriptors%20%28which%20include%20the%20serial%20number%29%20from%20audit%20entries.%0A%23%0A%23HidePII%3Dfalse }}
        mode: 0600
        path: /etc/usbguard/usbguard-daemon.conf
        overwrite: true

Authorize Human Interface Devices and USB hubs in USBGuard daemon   [ref]rule

To allow authorization of USB devices combining human interface device and hub capabilities by USBGuard daemon, add the line allow with-interface match-all { 03:*:* 09:00:* } to /etc/usbguard/rules.conf.

Warning:  This rule should be understood primarily as a convenience administration feature. This rule ensures that if the USBGuard default rules.conf file is present, it will alter it so that USB human interface devices and hubs are allowed. However, if the rules.conf file is altered by system administrator, the rule does not check if USB human interface devices and hubs are allowed. This assumes that an administrator modified the file with some purpose in mind.
Rationale:

Without allowing Human Interface Devices, it might not be possible to interact with the system. Without allowing hubs, it might not be possible to use any USB devices on the system.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  annotations:
    complianceascode.io/depends-on: xccdf_org.ssgproject.content_rule_package_usbguard_installed
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %0Aallow%20with-interface%20match-all%20%7B%2003%3A%2A%3A%2A%2009%3A00%3A%2A%20%7D }}
        mode: 0600
        path: /etc/usbguard/rules.d/75-hid-and-hub.conf
        overwrite: true

System Accounting with auditd   [ref]group

The audit service provides substantial capabilities for recording system activities. By default, the service audits about SELinux AVC denials and certain types of security-relevant events such as system logins, account modifications, and authentication events performed by programs such as sudo. Under its default configuration, auditd has modest disk space requirements, and should not noticeably impact system performance.

NOTE: The Linux Audit daemon auditd can be configured to use the augenrules program to read audit rules files (*.rules) located in /etc/audit/rules.d location and compile them to create the resulting form of the /etc/audit/audit.rules configuration file during the daemon startup (default configuration). Alternatively, the auditd daemon can use the auditctl utility to read audit rules from the /etc/audit/audit.rules configuration file during daemon startup, and load them into the kernel. The expected behavior is configured via the appropriate ExecStartPost directive setting in the /usr/lib/systemd/system/auditd.service configuration file. To instruct the auditd daemon to use the augenrules program to read audit rules (default configuration), use the following setting:

ExecStartPost=-/sbin/augenrules --load
in the /usr/lib/systemd/system/auditd.service configuration file. In order to instruct the auditd daemon to use the auditctl utility to read audit rules, use the following setting:
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules
in the /usr/lib/systemd/system/auditd.service configuration file. Refer to [Service] section of the /usr/lib/systemd/system/auditd.service configuration file for further details.

Government networks often have substantial auditing requirements and auditd can be configured to meet these requirements. Examining some example audit records demonstrates how the Linux audit system satisfies common requirements. The following example from Red Hat Enterprise Linux 7 Documentation available at https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/selinux_users_and_administrators_guide/index#sect-Security-Enhanced_Linux-Fixing_Problems-Raw_Audit_Messages shows the substantial amount of information captured in a two typical "raw" audit messages, followed by a breakdown of the most important fields. In this example the message is SELinux-related and reports an AVC denial (and the associated system call) that occurred when the Apache HTTP Server attempted to access the /var/www/html/file1 file (labeled with the samba_share_t type):
type=AVC msg=audit(1226874073.147:96): avc:  denied  { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13
a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)
  • msg=audit(1226874073.147:96)
    • The number in parentheses is the unformatted time stamp (Epoch time) for the event, which can be converted to standard time by using the date command.
  • { getattr }
    • The item in braces indicates the permission that was denied. getattr indicates the source process was trying to read the target file's status information. This occurs before reading files. This action is denied due to the file being accessed having the wrong label. Commonly seen permissions include getattr, read, and write.
  • comm="httpd"
    • The executable that launched the process. The full path of the executable is found in the exe= section of the system call (SYSCALL) message, which in this case, is exe="/usr/sbin/httpd".
  • path="/var/www/html/file1"
    • The path to the object (target) the process attempted to access.
  • scontext="unconfined_u:system_r:httpd_t:s0"
    • The SELinux context of the process that attempted the denied action. In this case, it is the SELinux context of the Apache HTTP Server, which is running in the httpd_t domain.
  • tcontext="unconfined_u:object_r:samba_share_t:s0"
    • The SELinux context of the object (target) the process attempted to access. In this case, it is the SELinux context of file1. Note: the samba_share_t type is not accessible to processes running in the httpd_t domain.
  • From the system call (SYSCALL) message, two items are of interest:
    • success=no: indicates whether the denial (AVC) was enforced or not. success=no indicates the system call was not successful (SELinux denied access). success=yes indicates the system call was successful - this can be seen for permissive domains or unconfined domains, such as initrc_t and kernel_t.
    • exe="/usr/sbin/httpd": the full path to the executable that launched the process, which in this case, is exe="/usr/sbin/httpd".

contains 94 rules

Configure auditd Rules for Comprehensive Auditing   [ref]group

The auditd program can perform comprehensive monitoring of system activity. This section describes recommended configuration settings for comprehensive auditing, but a full description of the auditing system's capabilities is beyond the scope of this guide. The mailing list linux-audit@redhat.com exists to facilitate community discussion of the auditing system.

The audit subsystem supports extensive collection of events, including:

  • Tracing of arbitrary system calls (identified by name or number) on entry or exit.
  • Filtering by PID, UID, call success, system call argument (with some limitations), etc.
  • Monitoring of specific files for modifications to the file's contents or metadata.

Auditing rules at startup are controlled by the file /etc/audit/audit.rules. Add rules to it to meet the auditing requirements for your organization. Each line in /etc/audit/audit.rules represents a series of arguments that can be passed to auditctl and can be individually tested during runtime. See documentation in /usr/share/doc/audit-VERSION and in the related man pages for more details.

If copying any example audit rulesets from /usr/share/doc/audit-VERSION, be sure to comment out the lines containing arch= which are not appropriate for your system's architecture. Then review and understand the following rules, ensuring rules are activated as needed for the appropriate architecture.

After reviewing all the rules, reading the following sections, and editing as needed, the new rules can be activated as follows:
$ sudo service auditd restart

contains 83 rules

Record Events that Modify the System's Discretionary Access Controls   [ref]group

At a minimum, the audit system should collect file permission changes for all users and root. Note that the "-F arch=b32" lines should be present even on a 64 bit system. These commands identify system calls for auditing. Even if the system is 64 bit it can still execute 32 bit system calls. Additionally, these rules can be configured in a number of ways while still achieving the desired effect. An example of this is that the "-S" calls could be split up and placed on separate lines, however, this is less efficient. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b32 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b32 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If your system is 64 bit then these lines should be duplicated and the arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b64 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b64 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

contains 15 rules

Record Events that Modify the System's Discretionary Access Controls - chmod   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82556-2

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20chmod%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20chmod%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-chmod_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - chown   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82557-0

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20chown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20chown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-chown_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fchmod   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82558-8

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchmod%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchmod%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchmod_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fchmodat   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82559-6

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchmodat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchmodat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchmodat_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fchown   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82560-4

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchown_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fchownat   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82561-2

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchownat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchownat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchownat_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fremovexattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82562-0

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000462-GPOS-00206, SRG-OS-000463-GPOS-00207, SRG-OS-000471-GPOS-00215, SRG-OS-000474-GPOS-00219, SRG-OS-000466-GPOS-00210, SRG-OS-000468-GPOS-00212, SRG-OS-000064-GPOS-00033, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000499-CTR-001255, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fremovexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fremovexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fremovexattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fsetxattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82563-8

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000462-GPOS-00206, SRG-OS-000463-GPOS-00207, SRG-OS-000466-GPOS-00210, SRG-OS-000468-GPOS-00212, SRG-OS-000471-GPOS-00215, SRG-OS-000474-GPOS-00219, SRG-OS-000064-GPOS-00033, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fsetxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fsetxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fsetxattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - lchown   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82564-6

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lchown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lchown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-lchown_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - lremovexattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82565-3

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000462-GPOS-00206, SRG-OS-000463-GPOS-00207, SRG-OS-000468-GPOS-00212, SRG-OS-000471-GPOS-00215, SRG-OS-000474-GPOS-00219, SRG-OS-000466-GPOS-00210, SRG-OS-000064-GPOS-00033, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lremovexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lremovexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-lremovexattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - lsetxattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82566-1

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000462-GPOS-00206, SRG-OS-000463-GPOS-00207, SRG-OS-000466-GPOS-00210, SRG-OS-000468-GPOS-00212, SRG-OS-000471-GPOS-00215, SRG-OS-000474-GPOS-00219, SRG-OS-000064-GPOS-00033, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lsetxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lsetxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-lsetxattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - removexattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82567-9

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000462-GPOS-00206, SRG-OS-000463-GPOS-00207, SRG-OS-000468-GPOS-00212, SRG-OS-000471-GPOS-00215, SRG-OS-000474-GPOS-00219, SRG-OS-000466-GPOS-00210, SRG-OS-000064-GPOS-00033, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20removexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20removexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-removexattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - setxattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82568-7

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000466-GPOS-00210, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000458-GPOS-00203, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, R73, 10.3.4, CNTR-OS-000160, CNTR-OS-000930

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20setxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20setxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-setxattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - umount   [ref]rule

At a minimum, the audit system should collect file system umount changes. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S umount -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S umount -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
#

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ -a%20always%2Cexit%20-F%20arch%3Db32%20-S%20umount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20umount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-umount_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - umount2   [ref]rule

At a minimum, the audit system should collect file system umount2 changes. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S umount2 -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S umount2 -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S umount2 -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S umount2 -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20umount2%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20umount2%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-umount2_dac_modification.rules
        overwrite: true

Record Execution Attempts to Run SELinux Privileged Commands   [ref]group

At a minimum, the audit system should collect the execution of SELinux privileged commands for all users and root.

contains 4 rules

Record Any Attempts to Run chcon   [ref]rule

At a minimum, the audit system should collect any execution attempt of the chcon command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/chcon -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/bin/chcon -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/chcon%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_chcon_execution.rules
        overwrite: true

Record Any Attempts to Run semanage   [ref]rule

At a minimum, the audit system should collect any execution attempt of the semanage command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/semanage -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/semanage -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/semanage%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_semanage_execution.rules
        overwrite: true

Record Any Attempts to Run setfiles   [ref]rule

At a minimum, the audit system should collect any execution attempt of the setfiles command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/setfiles -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/setfiles -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/setfiles%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_setfiles_execution.rules
        overwrite: true

Record Any Attempts to Run setsebool   [ref]rule

At a minimum, the audit system should collect any execution attempt of the setsebool command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/setsebool -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/setsebool -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/setsebool%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_setsebool_execution.rules
        overwrite: true

Record File Deletion Events by User   [ref]group

At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=unset -F key=delete

contains 5 rules

Ensure auditd Collects File Deletion Events by User - rename   [ref]rule

At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S rename -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S rename -F auid>=1000 -F auid!=unset -F key=delete

Rationale:

Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.

Severity:  medium

Identifiers:  CCE-82575-2

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-000366, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.4, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.1.1, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.MA-2, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.7, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000466-GPOS-00210, SRG-OS-000467-GPOS-00211, SRG-OS-000468-GPOS-00212, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.2.1.7, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20rename%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20rename%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A
        mode: 0644
        path: /etc/audit/rules.d/75-rename-file-deletion-events.rules
        overwrite: true

Ensure auditd Collects File Deletion Events by User - renameat   [ref]rule

At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S renameat -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S renameat -F auid>=1000 -F auid!=unset -F key=delete

Rationale:

Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.

Severity:  medium

Identifiers:  CCE-82576-0

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-000366, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.4, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.1.1, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.MA-2, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.7, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000466-GPOS-00210, SRG-OS-000467-GPOS-00211, SRG-OS-000468-GPOS-00212, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.2.1.7, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20renameat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20renameat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A
        mode: 0644
        path: /etc/audit/rules.d/75-renameat-file-deletion-events.rules
        overwrite: true

Ensure auditd Collects File Deletion Events by User - rmdir   [ref]rule

At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S rmdir -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir -F auid>=1000 -F auid!=unset -F key=delete

Rationale:

Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.

Severity:  medium

Identifiers:  CCE-82577-8

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-000366, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.4, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.1.1, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.MA-2, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.7, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000466-GPOS-00210, SRG-OS-000467-GPOS-00211, SRG-OS-000468-GPOS-00212, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.2.1.7, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20rmdir%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20rmdir%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A
        mode: 0644
        path: /etc/audit/rules.d/75-rmdir-file-deletion-events.rules
        overwrite: true

Ensure auditd Collects File Deletion Events by User - unlinkat   [ref]rule

At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S unlinkat -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S unlinkat -F auid>=1000 -F auid!=unset -F key=delete

Rationale:

Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.

Severity:  medium

Identifiers:  CCE-82579-4

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-000366, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.4, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.1.1, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.MA-2, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.7, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000466-GPOS-00210, SRG-OS-000467-GPOS-00211, SRG-OS-000468-GPOS-00212, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.2.1.7, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20unlinkat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20unlinkat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A
        mode: 0644
        path: /etc/audit/rules.d/75-unlinkat-file-deletion-events.rules
        overwrite: true

Record Unauthorized Access Attempts Events to Files (unsuccessful)   [ref]group

At a minimum, the audit system should collect unauthorized file accesses for all users and root. Note that the "-F arch=b32" lines should be present even on a 64 bit system. These commands identify system calls for auditing. Even if the system is 64 bit it can still execute 32 bit system calls. Additionally, these rules can be configured in a number of ways while still achieving the desired effect. An example of this is that the "-S" calls could be split up and placed on separate lines, however, this is less efficient. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
    -a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If your system is 64 bit then these lines should be duplicated and the arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
    -a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

contains 10 rules

Record Unsuccessful Access Attempts to Files - creat   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Access Attempts to Files - ftruncate   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Access Attempts to Files - open   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Access Attempts to Files - open_by_handle_at   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Access Attempts to Files - openat   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Delete Attempts to Files - rename   [ref]rule

The audit system should collect unsuccessful file deletion attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S rename -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b32 -S rename -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S rename -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b64 -S rename -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S unlink,unlinkat,rename,renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-delete
Rationale:

Unsuccessful attempts to delete files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20rename%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20rename%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20rename%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20rename%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-rename_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Delete Attempts to Files - renameat   [ref]rule

The audit system should collect unsuccessful file deletion attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b32 -S renameat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b64 -S renameat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S unlink,unlinkat,rename,renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-delete
Rationale:

Unsuccessful attempts to delete files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20renameat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20renameat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20renameat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20renameat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-renameat_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Access Attempts to Files - truncate   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Delete Attempts to Files - unlinkat   [ref]rule

The audit system should collect unsuccessful file deletion attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S unlinkat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b32 -S unlinkat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S unlinkat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b64 -S unlinkat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S unlink,unlinkat,rename,renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-delete
Rationale:

Unsuccessful attempts to delete files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20unlinkat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20unlinkat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20unlinkat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20unlinkat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-unlinkat_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Information on Kernel Modules Loading and Unloading   [ref]group

To capture kernel module loading and unloading events, use following lines, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:

-a always,exit -F arch=ARCH -S init_module,delete_module -F key=modules
Place to add the lines depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the lines to file /etc/audit/audit.rules.

contains 3 rules

Ensure auditd Collects Information on Kernel Module Unloading - delete_module   [ref]rule

To capture kernel module unloading events, use following line, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:

-a always,exit -F arch=ARCH -S delete_module -F key=modules
Place to add the line depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the line to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the line to file /etc/audit/audit.rules.

Rationale:

The removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20delete_module%20-k%20module-change%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20delete_module%20-k%20module-change%0A
        mode: 0600
        path: /etc/audit/rules.d/75-kernel-module-loading-delete.rules
        overwrite: true

Ensure auditd Collects Information on Kernel Module Loading and Unloading - finit_module   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d to capture kernel module loading and unloading events, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S finit_module -F key=modules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file in order to capture kernel module loading and unloading events, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S finit_module -F key=modules

Rationale:

The addition/removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20finit_module%20-k%20module-change%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20finit_module%20-k%20module-change%0A
        mode: 0600
        path: /etc/audit/rules.d/75-kernel-module-loading-finit.rules
        overwrite: true

Ensure auditd Collects Information on Kernel Module Loading - init_module   [ref]rule

To capture kernel module loading events, use following line, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:

-a always,exit -F arch=ARCH -S init_module -F key=modules
Place to add the line depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the line to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the line to file /etc/audit/audit.rules.

Rationale:

The addition of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20init_module%20-k%20module-change%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20init_module%20-k%20module-change%0A
        mode: 0600
        path: /etc/audit/rules.d/75-kernel-module-loading-init.rules
        overwrite: true
contains 3 rules

Record Information on the Use of Privileged Commands   [ref]group

At a minimum, the audit system should collect the execution of privileged commands for all users and root.

contains 31 rules

Ensure auditd Collects Information on the Use of Privileged Commands - chage   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/chage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/chage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/chage%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_chage_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - chsh   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/chsh -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/chsh -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/chsh%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_chsh_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - crontab   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/crontab -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/crontab -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/crontab%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_crontab_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - dbus helper   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path= /usr/libexec/dbus-1/dbus-daemon-launch-helper-1 -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path= /usr/libexec/dbus-1/dbus-daemon-launch-helper-1 -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-87183-0

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/libexec/dbus-1/dbus-daemon-launch-helper-1%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_libexec_dbus-1_dbus-daemon-launch-helper-1_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - fusermount   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/fusermount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/fusermount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-86210-2

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/fusermount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_fusermount_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - fusermount3   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/fusermount3 -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/fusermount3 -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-86676-4

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/fusermount3%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_fusermount3_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - gpasswd   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/gpasswd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/gpasswd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/gpasswd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_gpasswd_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - grub2_set_bootflag   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/grub2-set-bootflag -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path= /usr/sbin/grub2-set-bootflag-F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-90740-2

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/grub2-set-bootflag%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_grub2-set-bootflag_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - mount   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/mount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/mount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/mount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_mount_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - mount.nfs   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/mount.nfs -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path= /usr/sbin/mount.nfs perm_x }}}-F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-87425-5

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/mount.nfs%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_mount.nfs_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - newgrp   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/newgrp -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/newgrp -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/newgrp%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_newgrp_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - pam_timestamp_check   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/pam_timestamp_check
-F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/pam_timestamp_check
-F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/pam_timestamp_check%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_pam_timestamp_check_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - passwd   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/passwd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_passwd_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - pkexec   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/pkexec -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/pkexec -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-86859-6

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/pkexec%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_pkexec_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - polkit helper   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path= /usr/lib/polkit-1/polkit-agent-helper-1-F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path= /usr/lib/polkit-1/polkit-agent-helper-1-F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-87024-6

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/lib/polkit-1/polkit-agent-helper-1%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_lib_polkit-1_polkit-agent-helper-1_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - postdrop   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/postdrop -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/postdrop -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/postdrop%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_postdrop_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - postqueue   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/postqueue -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/postqueue -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/postqueue%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_postqueue_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - pt_chown   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/libexec/pt_chown -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/libexec/pt_chown -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/libexec/pt_chown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_libexec_pt_chown_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - ssh-keysign   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/libexec/openssh/ssh-keysign -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/libexec/openssh/ssh-keysign -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/libexec/openssh/ssh-keysign%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_libexec_openssh_ssh-keysign_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - sssd_krb5_child   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/libexec/sssd/krb5_child -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/libexec/sssd/krb5_child -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-90599-2

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/libexec/sssd/krb5_child%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_libexec_sssd_krb5_child_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - sssd_ldap_child   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/libexec/sssd/ldap_child -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/libexec/sssd/ldap_child -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-90544-8

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/libexec/sssd/ldap_child%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_libexec_sssd_ldap_child_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - sssd_proxy_child   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/libexec/sssd/proxy_child -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/libexec/sssd/proxy_child -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-90451-6

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/libexec/sssd/proxy_child%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_libexec_sssd_proxy_child_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - sssd_selinux_child   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/libexec/sssd/selinux_child -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/libexec/sssd/selinux_child -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-90356-7

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/libexec/sssd/selinux_child%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_libexec_sssd_selinux_child_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - su   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/su -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/su -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/su%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_su_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - sudo   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/sudo%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_sudo_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - sudoedit   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/sudoedit -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/sudoedit -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/sudoedit%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_sudoedit_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - umount   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/umount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/umount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/umount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_umount_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - unix_chkpwd   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/unix_chkpwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/unix_chkpwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/unix_chkpwd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_unix_chkpwd_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - userhelper   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/userhelper -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/userhelper -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/userhelper%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_userhelper_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - utempter   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path= /usr/libexec/utempter -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path= /usr/libexec/utempter -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-88210-0

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/libexec/utempter%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_libexec_utempter_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - write   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/write -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/write -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-88148-2

References:  SRG-APP-000029-CTR-000085, CNTR-OS-000080

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/write%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_write_execution.rules
        overwrite: true

Make the auditd Configuration Immutable   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d in order to make the auditd configuration immutable:

-e 2
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file in order to make the auditd configuration immutable:
-e 2
With this setting, a reboot will be required to change any audit rules.

Rationale:

Making the audit configuration immutable prevents accidental as well as malicious modification of the audit rules, although it may be problematic if legitimate changes are needed during system operation.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-e%202%0A
        mode: 0600
        path: /etc/audit/rules.d/90-immutable.rules
        overwrite: true

Ensure auditd Collects Information on Exporting to Media (successful)   [ref]rule

At a minimum, the audit system should collect media exportation events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=unset -F key=export
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=unset -F key=export

Rationale:

The unauthorized exportation of data to external media could result in an information leak where classified information, Privacy Act information, and intellectual property could be lost. An audit trail should be created each time a filesystem is mounted to help identify and guard against information loss.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20mount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20mount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-mount_dac_modification.rules
        overwrite: true

Record Attempts to Alter Process and Session Initiation Information   [ref]rule

The audit system already collects process information for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d in order to watch for attempted manual edits of files involved in storing such process information:

-w /var/run/utmp -p wa -k session
-w /var/log/btmp -p wa -k session
-w /var/log/wtmp -p wa -k session
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file in order to watch for attempted manual edits of files involved in storing such process information:
-w /var/run/utmp -p wa -k session
-w /var/log/btmp -p wa -k session
-w /var/log/wtmp -p wa -k session

Rationale:

Manual editing of these files may indicate nefarious activity, such as an attacker attempting to remove evidence of an intrusion.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---


apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %0A-w%20/var/run/utmp%20-p%20wa%20-k%20session%0A-w%20/var/log/btmp%20-p%20wa%20-k%20session%0A-w%20/var/log/wtmp%20-p%20wa%20-k%20session%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-audit-session-events.rules
        overwrite: true

Ensure auditd Collects System Administrator Actions   [ref]rule

At a minimum, the audit system should collect administrator actions for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions

Rationale:

The actions taken by system administrators should be audited to keep a record of what was executed on the system, as well as, for accountability purposes.

Severity:  medium

Identifiers:  CCE-82613-1

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, AC-2(7)(b), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.2, Req-10.2.5.b, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000304-GPOS-00121, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-APP-000026-CTR-000070, SRG-APP-000027-CTR-000075, SRG-APP-000028-CTR-000080, SRG-APP-000291-CTR-000675, SRG-APP-000292-CTR-000680, SRG-APP-000293-CTR-000685, SRG-APP-000294-CTR-000690, SRG-APP-000319-CTR-000745, SRG-APP-000320-CTR-000750, SRG-APP-000509-CTR-001305, R73, 10.2.1.5, CNTR-OS-000050, CNTR-OS-000060, CNTR-OS-000070

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ -w%20/etc/sudoers.d/%20-p%20wa%20-k%20actions%0A-w%20/etc/sudoers%20-p%20wa%20-k%20actions%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-audit-sysadmin-actions.rules
        overwrite: true

Record Events that Modify User/Group Information   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification

If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:
-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification

Warning:  This rule checks for multiple syscalls related to account changes; it was written with DISA STIG in mind. Other policies should use a separate rule for each syscall that needs to be checked. For example:
  • audit_rules_usergroup_modification_group
  • audit_rules_usergroup_modification_gshadow
  • audit_rules_usergroup_modification_passwd
Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000018, CCI-000130, CCI-000172, CCI-001403, CCI-002130, 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000239-GPOS-00089, SRG-OS-000241-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000476-GPOS-00221, SRG-APP-000026-CTR-000070, SRG-APP-000027-CTR-000075, SRG-APP-000028-CTR-000080, SRG-APP-000291-CTR-000675, SRG-APP-000292-CTR-000680, SRG-APP-000293-CTR-000685, SRG-APP-000294-CTR-000690, SRG-APP-000319-CTR-000745, SRG-APP-000320-CTR-000750, SRG-APP-000509-CTR-001305, CNTR-OS-000050, CNTR-OS-000060, CNTR-OS-000070

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/group%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A-w%20/etc/passwd%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A-w%20/etc/gshadow%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A-w%20/etc/shadow%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A-w%20/etc/security/opasswd%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/75-audit_rules_usergroup_modification.rules
        overwrite: true

Record Events that Modify User/Group Information - /etc/group   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/group -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/group -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

Identifiers:  CCE-82654-5

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000018, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-001403, CCI-001404, CCI-001405, CCI-001683, CCI-001684, CCI-001685, CCI-001686, CCI-002130, CCI-002132, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000503-CTR-001275, R73, 10.2.1.5, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000970

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/group%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/30-etc_group_usergroup_modification.rules
        overwrite: true

Record Events that Modify User/Group Information - /etc/gshadow   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/gshadow -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/gshadow -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

Identifiers:  CCE-82655-2

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000018, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-001403, CCI-001404, CCI-001405, CCI-001683, CCI-001684, CCI-001685, CCI-001686, CCI-002130, CCI-002132, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000503-CTR-001275, R73, 10.2.1.5, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000970

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/gshadow%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/30-etc_gshadow_usergroup_modification.rules
        overwrite: true

Record Events that Modify User/Group Information - /etc/security/opasswd   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

Identifiers:  CCE-82656-0

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000018, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-001403, CCI-001404, CCI-001405, CCI-001683, CCI-001684, CCI-001685, CCI-001686, CCI-002130, CCI-002132, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000503-CTR-001275, R73, 10.2.1.5, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000970

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/security/opasswd%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/30-etc_security_opasswd_usergroup_modification.rules
        overwrite: true

Record Events that Modify User/Group Information - /etc/passwd   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/passwd -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/passwd -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

Identifiers:  CCE-82657-8

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000018, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-001403, CCI-001404, CCI-001405, CCI-001683, CCI-001684, CCI-001685, CCI-001686, CCI-002130, CCI-002132, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000304-GPOS-00121, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-OS-000274-GPOS-00104, SRG-OS-000275-GPOS-00105, SRG-OS-000276-GPOS-00106, SRG-OS-000277-GPOS-00107, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000503-CTR-001275, R73, 10.2.1.5, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000970

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/passwd%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/30-etc_passwd_usergroup_modification.rules
        overwrite: true

Record Events that Modify User/Group Information - /etc/shadow   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/shadow -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/shadow -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

Identifiers:  CCE-82658-6

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000018, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-001403, CCI-001404, CCI-001405, CCI-001683, CCI-001684, CCI-001685, CCI-001686, CCI-002130, CCI-002132, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000503-CTR-001275, R73, 10.2.1.5, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000970

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/shadow%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/30-etc_shadow_usergroup_modification.rules
        overwrite: true

System Audit Logs Must Be Owned By Root   [ref]rule

All audit logs must be owned by root user and group. By default, the path for audit log is

/var/log/audit/
. To properly set the owner of /var/log/audit, run the command:
$ sudo chown root /var/log/audit 
To properly set the owner of /var/log/audit/*, run the command:
$ sudo chown root /var/log/audit/* 

Rationale:

Unauthorized disclosure of audit records can reveal system and configuration data to attackers, thus compromising its confidentiality.

Severity:  medium

System Audit Logs Must Have Mode 0640 or Less Permissive   [ref]rule

Determine where the audit logs are stored with the following command:

$ sudo grep -iw log_file /etc/audit/auditd.conf
log_file = /var/log/audit/audit.log
Configure the audit log to be protected from unauthorized read access by setting the correct permissive mode with the following command:
$ sudo chmod 0600 audit_log_file
By default, audit_log_file is "/var/log/audit/audit.log".

Rationale:

If users can write to audit logs, audit trails can be modified or destroyed.

Severity:  medium

Configure auditd Data Retention   [ref]group

The audit system writes data to /var/log/audit/audit.log. By default, auditd rotates 5 logs by size (6MB), retaining a maximum of 30MB of data in total, and refuses to write entries when the disk is too full. This minimizes the risk of audit data filling its partition and impacting other services. This also minimizes the risk of the audit daemon temporarily disabling the system if it cannot write audit log (which it can be configured to do). For a busy system or a system which is thoroughly auditing system activity, the default settings for data retention may be insufficient. The log file size needed will depend heavily on what types of events are being audited. First configure auditing to log all the events of interest. Then monitor the log size manually for awhile to determine what file size will allow you to keep the required data for the correct time period.

Using a dedicated partition for /var/log/audit prevents the auditd logs from disrupting system functionality if they fill, and, more importantly, prevents other activity in /var from filling the partition and stopping the audit trail. (The audit logs are size-limited and therefore unlikely to grow without bound unless configured to do so.) Some machines may have requirements that no actions occur which cannot be audited. If this is the case, then auditd can be configured to halt the machine if it runs out of space. Note: Since older logs are rotated, configuring auditd this way does not prevent older logs from being rotated away before they can be viewed. If your system is configured to halt when logging cannot be performed, make sure this can never happen under normal circumstances! Ensure that /var/log/audit is on its own partition, and that this partition is larger than the maximum amount of data auditd will retain normally.

contains 3 rules

Configure auditd Disk Error Action on Disk Error   [ref]rule

The auditd service can be configured to take an action when there is a disk error. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting ACTION appropriately:

disk_error_action = ACTION
Set this value to single to cause the system to switch to single-user mode for corrective action. Acceptable values also include syslog, exec, single, and halt. For certain systems, the need for availability outweighs the need to log all actions, and a different setting should be determined. Details regarding all possible values for ACTION are described in the auditd.conf man page.

Rationale:

Taking appropriate action in case of disk errors will minimize the possibility of losing audit records.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Configure auditd max_log_file_action Upon Reaching Maximum Log Size   [ref]rule

The default action to take when the logs reach their maximum size is to rotate the log files, discarding the oldest one. To configure the action taken by auditd, add or correct the line in /etc/audit/auditd.conf:

max_log_file_action = ACTION
Possible values for ACTION are described in the auditd.conf man page. These include:
  • ignore
  • syslog
  • suspend
  • rotate
  • keep_logs
Set the ACTION to rotate to ensure log rotation occurs. This is the default. The setting is case-insensitive.

Rationale:

Automatically rotating logs (by setting this to rotate) minimizes the chances of the system unexpectedly running out of disk space by being overwhelmed with log data. However, for systems that must never discard log data, or which use external processes to transfer it and reclaim space, keep_logs can be employed.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Resolve information before writing to audit logs   [ref]rule

To configure Audit daemon to resolve all uid, gid, syscall, architecture, and socket address information before writing the events to disk, set log_format to ENRICHED in /etc/audit/auditd.conf.

Rationale:

If option log_format isn't set to ENRICHED, the audit records will be stored in a format exactly as the kernel sends them.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

System Accounting with auditd   [ref]group

The auditd program can perform comprehensive monitoring of system activity. This section makes use of recommended configuration settings for specific policies or use cases. The rules in this section make use of rules defined in /usr/share/doc/audit-VERSION/rules.

contains 5 rules

Configure auditing of unsuccessful file accesses   [ref]rule

Ensure that unsuccessful attempts to access a file are audited. The following rules configure audit as described above:

## Unsuccessful file access (any other opens) This has to go last.
-a always,exit -F arch=b32 -S open,openat,openat2,open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-access
-a always,exit -F arch=b64 -S open,openat,openat2,open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-access
-a always,exit -F arch=b32 -S open,openat,openat2,open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-access
-a always,exit -F arch=b64 -S open,openat,openat2,open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-access    
Load new Audit rules into kernel by running:
augenrules --load
Note: This rule uses a special set of Audit rules to comply with OSPP 4.2.1. You may reuse this rule in different profiles. If you decide to do so, it is recommended that you inspect contents of the file closely and make sure that they are alligned with your needs.

Rationale:

Unsuccessful attempts to access a file might be signs of malicious activity happening within the system. Auditing of such activities helps in their monitoring and investigation.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
#

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Copenat%2Copenat2%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Copenat%2Copenat2%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Copenat%2Copenat2%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Copenat%2Copenat2%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-access%0A }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-3-access-failed.rules
        overwrite: true

Configure auditing of unsuccessful file creations   [ref]rule

Ensure that unsuccessful attempts to create a file are audited. The following rules configure audit as described above:

## Unsuccessful file creation (open with O_CREAT)
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b64 -S openat,open_by_handle_at -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b32 -S open -F a1&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b64 -S open -F a1&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b32 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b64 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b64 -S openat,open_by_handle_at -F a2&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b32 -S open -F a1&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b64 -S open -F a1&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b32 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-create
-a always,exit -F arch=b64 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-create    
Load new Audit rules into kernel by running:
augenrules --load
Note: This rule uses a special set of Audit rules to comply with OSPP 4.2.1. You may reuse this rule in different profiles. If you decide to do so, it is recommended that you inspect contents of the file closely and make sure that they are alligned with your needs.

Rationale:

Unsuccessful file creations might be a sign of a malicious action being performed on the system. Keeping log of such events helps in monitoring and investigation of such actions.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
#

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-create%0A }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-1-create-failed.rules
        overwrite: true

Configure auditing of unsuccessful file deletions   [ref]rule

Ensure that unsuccessful attempts to delete a file are audited. The following rules configure audit as described above:

## Unsuccessful file delete
-a always,exit -F arch=b32 -S unlink,unlinkat,rename,renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b64 -S unlink,unlinkat,rename,renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b32 -S unlink,unlinkat,rename,renameat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b64 -S unlink,unlinkat,rename,renameat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete    
Load new Audit rules into kernel by running:
augenrules --load
Note: This rule uses a special set of Audit rules to comply with OSPP 4.2.1. You may reuse this rule in different profiles. If you decide to do so, it is recommended that you inspect contents of the file closely and make sure that they are alligned with your needs.

Rationale:

Unsuccessful attempts to delete a file might be signs of malicious activities. Auditing of such events help in monitoring and investigating of such activities.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,%23%23%20Unsuccessful%20file%20delete%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20unlink%2Cunlinkat%2Crename%2Crenameat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-delete%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20unlink%2Cunlinkat%2Crename%2Crenameat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-delete%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20unlink%2Cunlinkat%2Crename%2Crenameat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-delete%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20unlink%2Cunlinkat%2Crename%2Crenameat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-delete%0A
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-4-delete-failed.rules
        overwrite: true

Configure auditing of unsuccessful file modifications   [ref]rule

Ensure that unsuccessful attempts to modify a file are audited. The following rules configure audit as described above:

## Unsuccessful file modifications (open for write or truncate)
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b64 -S openat,open_by_handle_at -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b32 -S open -F a1&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b64 -S open -F a1&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b32 -S truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b64 -S truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b64 -S openat,open_by_handle_at -F a2&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b32 -S open -F a1&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b64 -S open -F a1&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b32 -S truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification
-a always,exit -F arch=b64 -S truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-modification    
Load new Audit rules into kernel by running:
augenrules --load
Note: This rule uses a special set of Audit rules to comply with OSPP 4.2.1. You may reuse this rule in different profiles. If you decide to do so, it is recommended that you inspect contents of the file closely and make sure that they are alligned with your needs.

Rationale:

Unsuccessful file modifications might be a sign of a malicious action being performed on the system. Auditing of such events helps in detection and investigation of such actions.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccessful-modification%0A
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-2-modify-failed.rules 
        overwrite: true

Enable auditd Service   [ref]rule

The auditd service is an essential userspace component of the Linux Auditing System, as it is responsible for writing audit records to disk. The auditd service can be enabled with the following manifest:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-auditd-enable
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: auditd.service
        enabled: true

This will enable the auditd service in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

Without establishing what type of events occurred, it would be difficult to establish, correlate, and investigate the events leading up to an outage or attack. Ensuring the auditd service is active ensures audit records generated by the kernel are appropriately recorded.

Additionally, a properly configured audit subsystem ensures that actions of individual system users can be uniquely traced to those users so they can be held accountable for their actions.

Severity:  medium

Identifiers:  CCE-82463-1

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.3.1, 3.3.2, 3.3.6, CCI-000126, CCI-000130, CCI-000131, CCI-000132, CCI-000133, CCI-000134, CCI-000135, CCI-000154, CCI-000158, CCI-000172, CCI-000366, CCI-001464, CCI-001487, CCI-001814, CCI-001875, CCI-001876, CCI-001877, CCI-002884, CCI-001878, CCI-001879, CCI-001880, CCI-001881, CCI-001882, CCI-001889, CCI-001914, CCI-000169, 164.308(a)(1)(ii)(D), 164.308(a)(5)(ii)(C), 164.310(a)(2)(iv), 164.310(d)(2)(iii), 164.312(b), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, CIP-004-6 R3.3, CIP-007-3 R6.5, AC-2(g), AU-3, AU-10, AU-2(d), AU-12(c), AU-14(1), AC-6(9), CM-6(a), SI-4(23), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1, Req-10.1, SRG-OS-000062-GPOS-00031, SRG-OS-000037-GPOS-00015, SRG-OS-000038-GPOS-00016, SRG-OS-000039-GPOS-00017, SRG-OS-000040-GPOS-00018, SRG-OS-000041-GPOS-00019, SRG-OS-000042-GPOS-00021, SRG-OS-000051-GPOS-00024, SRG-OS-000054-GPOS-00025, SRG-OS-000122-GPOS-00063, SRG-OS-000254-GPOS-00095, SRG-OS-000255-GPOS-00096, SRG-OS-000337-GPOS-00129, SRG-OS-000348-GPOS-00136, SRG-OS-000349-GPOS-00137, SRG-OS-000350-GPOS-00138, SRG-OS-000351-GPOS-00139, SRG-OS-000352-GPOS-00140, SRG-OS-000353-GPOS-00141, SRG-OS-000354-GPOS-00142, SRG-OS-000358-GPOS-00145, SRG-OS-000365-GPOS-00152, SRG-OS-000392-GPOS-00172, SRG-OS-000475-GPOS-00220, SRG-APP-000095-CTR-000170, SRG-APP-000409-CTR-000990, SRG-APP-000508-CTR-001300, SRG-APP-000510-CTR-001310, R33, R73, 10.2.1, CNTR-OS-000150, CNTR-OS-000180

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: auditd.service
        enabled: true

Extend Audit Backlog Limit for the Audit Daemon   [ref]rule

To improve the kernel capacity to queue all log events, even those which occurred prior to the audit daemon, add the argument audit_backlog_limit=8192 to all BLS (Boot Loader Specification) entries ('options' line) for the Linux operating system in /boot/loader/entries/*.conf.

Rationale:

audit_backlog_limit sets the queue length for audit events awaiting transfer to the audit daemon. Until the audit daemon is up and running, all log messages are stored in this queue. If the queue is overrun during boot process, the action defined by audit failure flag is taken.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - audit_backlog_limit=8192

Enable Auditing for Processes Which Start Prior to the Audit Daemon   [ref]rule

To ensure all processes can be audited, even those which start prior to the audit daemon, add the argument audit=1 to all BLS (Boot Loader Specification) entries ('options' line) for the Linux operating system in /boot/loader/entries/*.conf.

Rationale:

Each process on the system carries an "auditable" flag which indicates whether its activities can be audited. Although auditd takes care of enabling this for all processes which launch after it does, adding the kernel argument ensures it is set for every process during boot.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - audit=1
Red Hat and Red Hat Enterprise Linux are either registered trademarks or trademarks of Red Hat, Inc. in the United States and other countries. All other names are registered trademarks or trademarks of their respective companies.