
gputils 0.12.0

James Bowman and Craig Franklin

January 20, 2004

Contents

1 Introduction 4
1.1 Tool Flows . 4

1.1.1 Absolute Asm Mode . 4
1.1.2 Relocatable Asm Mode . 4
1.1.3 HLL Mode . 4
1.1.4 Which Tool Flow is best? . 5

1.2 Supported processors . 5

2 gpal 6
2.1 Introduction . 6
2.2 Running gpal . 6

2.2.1 Operations . 6
2.2.2 Input files . 7

2.3 Basics . 7
2.3.1 Free-format . 7
2.3.2 Statement terminator . 7
2.3.3 Comments . 7

2.4 Types . 7
2.4.1 Builtin Types . 7
2.4.2 Arrays . 8
2.4.3 Enumerated . 8
2.4.4 Alias . 8

2.5 Expressions . 8
2.5.1 Symbols . 8
2.5.2 Numbers . 9
2.5.3 Operators . 9
2.5.4 Assignment . 9
2.5.5 Test . 9

2.6 Statements . 10
2.6.1 If . 10
2.6.2 Case . 10
2.6.3 Loop . 10
2.6.4 While . 11
2.6.5 For . 11
2.6.6 Assembly . 11
2.6.7 Return . 11
2.6.8 Null . 11
2.6.9 Pragma . 12

2.7 Declarations . 12
2.7.1 Variables . 12
2.7.2 Constants . 12

2.8 Subprograms . 12
2.8.1 Procedure . 12

1

CONTENTS 2

2.8.2 Function . 13
2.9 Files . 13

2.9.1 Module . 13
2.9.2 Public . 13
2.9.3 With . 13

2.10 Code Generation . 13
2.10.1 Phases . 13
2.10.2 Expression Evaluation . 14
2.10.3 COFF sections . 14
2.10.4 Name mangling . 14

2.11 Coding Suggestions . 15
2.11.1 Use uint8 types . 15
2.11.2 Keep data private . 15
2.11.3 Group related subprograms and data in one module 15
2.11.4 Name COFF sections . 15
2.11.5 Don’ t use absolute sections . 15
2.11.6 Use multiple module implementations . 15

3 gpasm 16
3.1 Running gpasm . 16

3.1.1 Using gpasm with “make” . 17
3.1.2 Dealing with errors . 17

3.2 Syntax . 17
3.2.1 File structure . 17
3.2.2 Expressions . 17
3.2.3 Numbers . 18
3.2.4 Preprocessor . 19
3.2.5 Processor header files . 20

3.3 Directives . 20
3.3.1 Code generation . 20
3.3.2 Configuration . 20
3.3.3 Conditional assembly . 20
3.3.4 Macros . 20
3.3.5 $. 21
3.3.6 Suggestions for structuring your code . 21
3.3.7 Directive summary . 21

3.4 Instructions . 29
3.4.1 Instruction set summary . 30

3.5 Errors/Warnings/Messages . 32
3.5.1 Errors . 32
3.5.2 Warnings . 34
3.5.3 Messages . 34

4 gplink 36
4.1 Running gplink . 36
4.2 gplink outputs . 36
4.3 Linker scripts . 36

5 gplib 38
5.1 Running gplib . 38
5.2 Creating an archive . 38
5.3 Other gplib operations . 38
5.4 Archive format . 39

CONTENTS 3

6 Utilities 40
6.1 gpdasm . 40

6.1.1 Running gpdasm . 40
6.1.2 Comments on Disassembling . 40

6.2 gpvc . 41
6.2.1 Running gpvc . 41

6.3 gpvo . 41
6.3.1 Running gpvo . 41

Chapter 1

Introduction

gputils is a collection of tools for Microchip (TM) PIC microcontrollers. It includes gpal, gpasm, gplink,
and gplib. Each tool is intended to be an open source replacement for a corresponding Microchip (TM)
tool. This manual covers the basics of running the tools. For more details on a microcontroller, consult
the manual for the specific PICmicro product that you are using.

This document is part of gputils.
gputils is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2, or (at your option) any
later version.

gputils is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with gputils; see the file
COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

1.1 Tool Flows

gputils can be used in three different ways: absolute asm mode, relocatable asm mode, and HLL mode.

1.1.1 Absolute Asm Mode

In absolute asm mode, an assembly language source file is directly converted into a hex file by gpasm.
This method is absolute because the final addresses are hard coded into the source file.

1.1.2 Relocatable Asm Mode

In relocatable asm mode, the microcontroller assembly source code is divided into separate modules.
Each module is assembled into an object using gpasm. That object can be placed “anywhere” in micro-
controller’s memory. Then gplink is used to resolve symbols references, assign final address, and to patch
the machine code with the final addresses. The output from gplink is an absolute executable object.

1.1.3 HLL Mode

In HLL (High Level Language) mode, the source code is written in a Ada like language. gpal then converts
that file into a relocatable assembly file. It then automatically invokes gpasm and gplink to generate an
absolute executable object.

4

CHAPTER 1. INTRODUCTION 5

1.1.4 Which Tool Flow is best?

Absolute mode is simple to understand and to use. It only requires one tool, gpasm. Most of the examples
on Microchip’s website use absolute mode. So why use relocatable mode?

� Code can be written without regard to addresses. This makes it easier to write and reuse.
� The objects can be archived to create a library, which also simplifies reuse.
� Recompiling a project can be faster, because you only compile the portions that have changed.
� Files can have local name spaces. The user chooses what symbols are global.

Most develpment tools use relocatable objects for these reasons. The few that don’t are generally micro-
controller tools. Their applications are so small that absolute mode isn’t impractical. For PICs, relocatable
mode has one big disadvantage. The bank and page control is a challenge. To overcome that, HLL mode
can be used. It helps to hide these details from the user.

1.2 Supported processors

gputils currently supports the following processors:
eeprom8 gen p12c508 p12c508a p12c509 p12c509a
p12c671 p12c672 p12ce518 p12ce519 p12ce673 p12ce674
p12cr509a p12f629 p12f675 p14000 p16c5x p16cxx
p16c432 p16c433 p16c505 p16c52 p16c54 p16c54a
p16c54b p16c54c p16c55 p16c55a p16c554 p16c557
p16c558 p16c56 p16c56a p16c57 p16c57c p16c58a
p16c58b p16c61 p16c62 p16c62a p16c62b p16c620
p16c620a p16c621 p16c621a p16c622 p16c622a p16c63
p16c63a p16c64 p16c64a p16c642 p16c65 p16c65a
p16c65b p16c66 p16c662 p16c67 p16c71 p16c710
p16c711 p16c712 p16c715 p16c716 p16c717 p16c72
p16c72a p16c73 p16c73a p16c73b p16c74 p16c745
p16c747 p16c74a p16c74b p16c76 p16c765 p16c77
p16c770 p16c771 p16c773 p16c774 p16c781 p16c782
p16c84 p16c923 p16c924 p16c925 p16c926 p16ce623
p16ce624 p16ce625 p16cr54 p16cr54a p16cr54b p16cr54c
p16cr56a p16cr57a p16cr57b p16cr57c p16cr58a p16cr58b
p16cr62 p16cr620a p16cr63 p16cr64 p16cr65 p16cr72
p16cr83 p16cr84 p16f627 p16f627a p16f628 p16f628a
p16f630 p16f648a p16f676 p16f684 p16f716 p16f72
p16f73 p16f737 p16f74 p16f76 p16f767 p16f77
p16f777 p16f818 p16f819 p16f83 p16f84 p16f84a
p16f87 p16f870 p16f871 p16f872 p16f873 p16f873a
p16f874 p16f874a p16f876 p16f876a p16f877 p16f877a
p16f88 p16hv540 p17cxx p17c42 p17c42a p17c43
p17c44 p17c752 p17c756 p17c756a p17c762 p17c766
p17cr42 p17cr43 p18cxx p18c242 p18c252 p18c442
p18c452 p18c601 p18c658 p18c801 p18c858 p18f1220
p18f1320 p18f2220 p18f2320 p18f2331 p18f242 p18f2431
p18f2439 p18f248 p18f252 p18f2539 p18f258 p18f2620
p18f4220 p18f4320 p18f4331 p18f442 p18f4431 p18f4439
p18f448 p18f452 p18f4539 p18f458 p18f4620 p18f6520
p18f6525 p18f6585 p18f6620 p18f6621 p18f6680 p18f6720
p18f8520 p18f8525 p18f8585 p18f8620 p18f8621 p18f8680
p18f8720 rf509af rf509ag rf675f rf675h rf675k
sx18 sx20 sx28

Chapter 2

gpal

2.1 Introduction

gpal is a compiler for Microchip (TM) PIC microcontrollers. Unlike most of the other tools in gputils,
there is no corresponding Microchip tool that it replaces. It is a new tool and language specifically de-
signed to to simplify software development for PICs. The language to very similar to the Pascal family of
languages, specifically Ada.

gpal was inspired by Jal <http://jal.sourceforge.net>. That language was created by Wouter Van Ooi-
jen.

2.2 Running gpal

The general syntax for running gpal is

gpal [options] input-files

Where options can be one of:

Option Meaning

a Compile or assemble, then archive.
c Compile or assemble, but don’t link.
d Output debug messages.
h Show the usage message.
H Scan the specified processor header file.
I <directory> Specify an include directory.
k”<options>” Extra link or lib options.
l List supported processors.
o <file> Alternate name of hex output file.
O<level> Optimization level.
p<processor> Select target processor.
q Quiet
S Compile only, don’t assemble or link.
t Do not delete intermediate files.
v Print gpal version information and exit.

2.2.1 Operations

gpal only converts .pal source files into .asm files. However, as a convience it can automatically invoke
gpasm to convert the .asm file into an object file with a .o extension. It can also invoke gplink to produce

6

CHAPTER 2. GPAL 7

a PIC executable or gplib to produce an archive of objects. The operations are selected using the options
-S, -a, and -c.

gpal will automatically remove any temporary file generated by its operation or by an tool it invokes.
That behavior can be controlled using the -t option.

Currently there is no difference between invoking gpal with a complete list of input files, verses in-
voking multiple times, once for each file. In the future, that will probably change.

2.2.2 Input files

The following tables summarizes the types of input files gpal will accept and the operations it performs:

File Extension Description Compile Assembly Link

.pal gpal source file Yes Yes Yes
.asm relocatable gpasm assembly file No Yes Yes

.o COFF object generated by gpasm No No Yes

.a COFF archive generated by glib No No Yes

2.3 Basics

2.3.1 Free-format

So this statement:

if a>b then
timer = 0;

end if;

is equivalent to:

if a>b then timer = 0; end if;

although not recommended.

2.3.2 Statement terminator

The semicolon is used to terminate all statements and subprograms.

2.3.3 Comments

Comments are proceeded by a double minus (–) and continue until the end of the current line.

2.4 Types

2.4.1 Builtin Types

The following table defines the built in types:

Name Size in bytes Minimum Value Maximum Value

uint8 1 0 255
int8 1 -128 127

uint16 2 0 65,535
int16 2 -32,768 32,767

uint24 3 0 16,777,215
int24 3 -8,388,608 8,388,607

uint32 4 0 4,294,967,295
int32 4 -2,147,483,648 2,147,483,647

CHAPTER 2. GPAL 8

None of the ranges are checked at run time. The user must ensure that any assignment expression
won’t overflow or underflow the type.

2.4.2 Arrays

type <name> is array <expression> to <expression> of <type>;

The following example will create an array type of 10 unsigned bytes:

type buffer_type is array 1 to 10 of uint8;
variable buffer : buffer_type;

2.4.3 Enumerated

type <name> is (<name> [, <name>]*);

The following code will create and enumerated type:

type main_state is (INIT, DELAY, OUTPUT);

This will create a new type that can take on one of three values. Each symbol in the list is assigned a value
starting at 0. Each symbol value pair is added to the global symbol table. All enumerated types use the
uint8 size. So there for the maximum list size is 256 members.

2.4.4 Alias

Types can be given new names to suit the user’s preference.

type <name> is <type>;

This example will create an alias of int16 with the name short.

type short is int16;

2.5 Expressions

2.5.1 Symbols

Symbols must match the following rule:

[a-z][_.0-9a-z]*

All symbols are case insensitive. So the following two statements are equivalent.

Timer = 0;
tImEr = 0;

The only exception is symbols that used to generate filenames.

with time;

This statement will open the file “time.pub”. If the host operating system uses a case sensitive file system,
the case of the with is important. To maintain portability across different operating systems, it is best to
keep the with statements and filenames lower case.

CHAPTER 2. GPAL 9

2.5.2 Numbers

gpal uses decimal as its default radix. The following table summarizes other supported numeric formats.

base general syntax 21 decimal written as

decimal [0-9]* 21
hex 0x[0-F]* 0x15

2.5.3 Operators

gpal supports a full set of operators, based on the C operator set. The operators in the following table are
arranged in groups of equal precedence, but the groups are arranged in order of increasing precedence.
When gpal encounters operators of equal precedence, it always evaluates from left to right.

Operator Description

= assignment

|| logical or

&& logical and

& bitwise and
| bitwise or
^ bitwise exclusive-or

< less than
> greater than

== equals
!= not equals
>= greater than or equal
<= less than or equal

<< left shift
>> right shift

+ addition
- subtraction

* multiplication
/ division

% modulo

- negation
! logical not
~ bitwise no

2.5.4 Assignment

<name>[’[’ <expression> ’]’]? = <expression>;

Assignment statements can appear in any statement block. <name> must be a variable. If the bracket
enclosed expression is added it must be an array.

2.5.5 Test

<expression> [<comparison operator> <expression>]*;

Test statements can only appear in the expressions of if statements and while loops. They must evaluate
to a boolean.

CHAPTER 2. GPAL 10

2.6 Statements

2.6.1 If

if <expression> then
<statements>

[elsif <expression> then
<statements>]*

[else
<statements>]?

end if;

The statements in each block are executed if the expression is true. Here is an example:

if i < 10 then
j = 5;

elsif i > 12 then
j = 10;

elsif i > 14 then
j = 14;

else
j = 0;

end if;

2.6.2 Case

case <name> is
[when <constant> =>
<statements>]*

[when others =>
<statements>]?

end case;

If <name> equals any of the <constants> the <statements> are executed. If none of the constants match
and an others is present, the others statements are executed. Here is an example:

case input is
when MAXIMUM =>

output = 8;
when 5 =>

output = 4;
when 1 =>

output = 2;
when others =>

output = 0;
end case;

2.6.3 Loop

loop
<statements>

end loop;

The statements in the block are executed in an infinite loop. Here is an example:

loop
j = j + 1;

CHAPTER 2. GPAL 11

if j = 100 then
return 0;

end if;
end loop;

2.6.4 While

while <expression>
loop

<statements>
end loop;

The statements in the block are executed while <expression> is true. Here is an example:

while j < 10
loop

j = j + 1;
end loop;

2.6.5 For

for <name> in <start_expression> to <end_expression>
loop

<statements>
end loop;

<name> is set to <start_expression>. It is then incremented each time the block of statements are executed.
It continues until <name> reaches <end_expression>. Here is an example:

for i in 0 to 10
loop

buffer[i] = 0;
end loop;

2.6.6 Assembly

asm
<asm statements>

end asm;

Unmodified <asm statements> are copied to the assembly file output. The syntax of <asm statements>
must be compatible with gpasm.

2.6.7 Return

return <expression>;

Evaluate the <expression>, place it in the return register, and return from the function.

2.6.8 Null

null;

Execute a NOP. This is a little different from NULL statements in most languages. It is typically is used
in statement block that was intentionally left blank and no code is generated.

CHAPTER 2. GPAL 12

2.6.9 Pragma

pragma <anything>;

Pragmas provide data to compiler which is outside of its legal syntax. The table below summarizes the
pragmas available:

Name Format Description

Code Address code_address = <constant> Make the code section absolute at address <constant>.
Code Section code_section = “<name>“ Set the code section name to <name>.

Processor processor = “<name>“ Set the processor name to <name>.
Udata Address udata_address = <constant> Make the udata section absolute at address <constant>.
Udata Section udata_section= “<name>“ Set the udata section name to <name>.

2.7 Declarations

2.7.1 Variables

Symbols whose values change during runtime are referred to as variables. Because variables change value
during run time they are stored in data memory. An expression specifies its initial value. A variable is
declared as follows:

<name> : <type> [= <expression>]?;

Here is an example:

gain : short = 10;

2.7.2 Constants

Compile time symbols whose values do not change are referred to as constants. A constant is declared as
follows:

<name> : constant = <expression>;

Here is an example:

filter_offset : constant = 0x1434;

2.8 Subprograms

2.8.1 Procedure

procedure <name> ([<arg name> : [in|out|inout] <type>]*) is
<declarations>

begin
<statements>

end procedure;

This creates a block of executable code that starts at <name>. The procedure can be called from other
subprograms within any statement block, but they can not be called from within an expression.

Permanent storage is allocated for each procedure argument. Data is passed to and from the procedure
through that storage. The calling subprogram puts data into the arguments and reads from the arguments
based the direction specified in the procedure definition. The direction is ignored by the procedure. All
the arguments can be read from and written to.

Local constants and variables are declared in <declarations>. Any variables declared in this region
may be permanent or overlayed with data from other subprograms.

CHAPTER 2. GPAL 13

2.8.2 Function

function <name> ([<arg name> : [in|out|inout] <type>]*) return type is
<declarations>

begin
<statements>

end function;

This creates a block of executable code that starts at <name>. The function can only be called from within
expressions.

Like procedures in many respects, except a value is returned. This value is used in the expression.

2.9 Files

2.9.1 Module

module <name> is
<subprogram definitions|variable definitions|constants|types>

end module;

The module defines a related group of subprograms and data that will be placed in the same page or bank.
One module is placed in each .pal file. Typically the filename will be the same as <name> with the .pal
extension added. Groups of modules are compiled and linked to gather to make the executable.

2.9.2 Public

public <name> is
<subprograms declarations|variable declarations|constants|types>

end public;

The public declares which portions of its module will be public. It also provides information about the
interface to the module’s subprograms and data. One public is placed in each .pub file. The filename
must be the same as <name> with the .pub extension added. The <name> must also match the <name>
of its module if one exists. When the module is compiled, it will scan its public file to verify that the
declarations in the file match its subprograms and data.

2.9.3 With

with <name>;

The with statement is the only statement allowed outside a module or public. It tells the compiler to
add the data from the public in the file <name>.pub to its symbol tables. This will allow access to that
module’s subprograms and data.

2.10 Code Generation

2.10.1 Phases

Parse

The input files are parsed and stored in memory in a tree format. Constructs are replaced with com-
mon structures. For example for and while loops are converted into conditional loops with initialization
statements and increment statements.

CHAPTER 2. GPAL 14

Analyze

The syntax and semantics of the tree are checked. Most of the errors are generated during this phase.

Optimize

The tree is modified to generate better code.

Code Generation

The tree is written to an asm file, so it can be assembled and linked. In the future, this stage will generate
a low level icode. That code will be further optimized before it is written to the asm file.

2.10.2 Expression Evaluation

Most compilers are a stack machine, accumulator machine, or a register machine. Not all of the machines
are good for every target processor. Some options either won’t work or aren’t optimal. Because of the
limited resources on PICs, the absence of stack manipulation instructions, and the fact that some instruc-
tions can only target the Wreg. An accumulator machine is the best choice for PICs. It is the choice that
gpal uses. For example:

i = (x + 3) & 4;

will generate the following pseudo code:

Wreg = x;
Wreg = Wreg + 3;
Wreg = Wreg & 4;
i = Wreg;

If necessary, intermediate values are stored in data memory. For byte sized operations the Wreg is used.
For larger sized operations, a section of data memory is used as the accumulator.

2.10.3 COFF sections

All the executable code in a module is placed in one COFF section. This guarantees that code will be on
the same page, so no page switching is required. the code section name is specified using the code_section
pragma. If that pragma isn’t used a default name is used.

Similarly all data memory is placed in one COFF section. This too reduces the number of bank
switches when accessing local data.

2.10.4 Name mangling

gpal uses a hierarchical name space. The module name is specified in all inter-module accesses. So to
write to memory “clock” in the local module:

clock = 0;

to write to memory “clock” in module “time”:

time.clock = 0;

To prevent collisions when compiling and linking all symbols are mangled in the asm output of gpal. It
takes the form:

<module>.<subprogram>.<local data>

So, local data “index” in procedure “pop_stack” in module “stack” is given the name “stack.pop_stack.index”.

CHAPTER 2. GPAL 15

2.11 Coding Suggestions

The following suggestions will help to generate smaller faster target code.

2.11.1 Use uint8 types

PICs are unsigned 8 bit machines. To do anything beyond that requires more memory and more instruction
cycles. So use uint8 for as many arguments and data as possible.

2.11.2 Keep data private

Any subprogram or data in the public file will make the corresponding object public. When an object is
public fewer compile time optimizations can be done. For example, if public data is defined in a module,
but not used in that module, it can’t be removed. Another module may access that data. So put as few
subprogram and data declarations in the public file as possible.

2.11.3 Group related subprograms and data in one module

Any time data is accessed in another module, it could require a bank switch. Minimizing switches will
help to reduce code size and increase speed.

2.11.4 Name COFF sections

Before relocating sections, gplink will combine all like named sections into one larger section. Sections
can not cross page or bank boundaries, so inter section accesses don’t require bank or page switches. To
name the sections use the code_section and udata_section pragmas. This will group the code together. If
the code is needed on a specific page or bank, create a logical definition in your linker script.

2.11.5 Don’ t use absolute sections

gpal provides the ability to specify the address of the code or udata of the current module. The feature is
provided for a limited set of cases were the address must be known. Unfortunately, it limits the choices
the linker can make when relocating sections. At worst it may make the design not fit in the available
memory. It also requires extra effort on the part of the user.

2.11.6 Use multiple module implementations

The public file defines the interface to a module. The name of the public and its file must match, so it
can be found. There is no requirement of module name to match the file name. This makes it possible
for multiple modules with the same interface to exist. You select the module to use when the project is
linked. For example you could have math_fast.pal and math_small.pal that both contain a math module.
One written to execute fast and the other written to be small in memory.

Chapter 3

gpasm

3.1 Running gpasm

The general syntax for running gpasm is

gpasm [options] asm-file

Where options can be one of:

Option Meaning

a <format> Produce hex file in one of four formats: inhx8m, inhx8s, inhx16, inhx32
(the default).

c Output a relocatable object
d symbol[=value] Equivalent to “#define <symbol> <value>”.
e [ON|OFF] Expand macros in listing file.
h Display the help message.
i

Ignore case in source code. By default gpasms to treats “fooYa” and
“FOOYA” as being different.

I <directory> Specify an include directory.
l List the supported processors.
L Ignore nolist directives.
m Memory dump.
n Use DOS style newlines (CRLF) in hex file. This option is disabled on

win32 systems.
o <file> Alternate name of hex output file.
p<processor> Select target processor.
q Quiet
r <radix> Set the radix, i.e. the number base that gpasm uses when interpreting

numbers. <radix> can be one of “oct”, “dec” and “hex” for bases eight,
ten, and sixteen respectively. Default is “hex”.

w [0 | 1 | 2] Set the message level.
v Print gpasm version information and exit.

Unless otherwise specified, gpasm removes the “.asm” suffix from its input file, replacing it with
“.lst” and “.hex” for the list and hex output files respectively. On most modern operating systems case is
significant in filenames. For this reason you should ensure that filenames are named consistently, and that
the “.asm” suffix on any source file is in lower case.

gpasm always produces a “.lst” file. If it runs without errors, it also produces a “.hex” file or a “.o”
file.

16

CHAPTER 3. GPASM 17

3.1.1 Using gpasm with “make”

On most operating systems, you can build a project using the make utility. To use gpasm with make, you
might have a “makefile” like this:

tree.hex: tree.asm treedef.inc
gpasm tree.asm

This will rebuild “tree.hex” whenever either of the “tree.asm” or “treedef.inc” files change. A more
comprehensive example of using gpasm with makefiles is included as example1 in the gpasm source
distribution.

3.1.2 Dealing with errors

gpasm doesn’t specifically create an error file. This can be a problem if you want to keep a record of
errors, or if your assembly produces so many errors that they scroll off the screen. To deal with this if your
shell is “sh”, “bash” or “ksh”, you can do something like:

gpasm tree.asm 2>&1 | tee tree.err

This redirects standard error to standard output (“2>&1”), then pipes this output into “tee”, which copies
it input to “tree.err”, and then displays it.

3.2 Syntax

3.2.1 File structure

gpasm source files consist of a series of lines. Lines can contain a label (starting in column 1) or an
operation (starting in any column after 1), both, or neither. Comments follow a “;” character, and are
treated as a newline. Labels may be any series of the letters A-z, digits 0-9, and the underscore (“_”); they
may not begin with a digit. Labels may be followed by a colon (“:”).

An operation is a single identifier (the same rules as for a label above) followed by a space, and a
comma-separated list of parameters. For example, the following are all legal source lines:

; Blank line
loop sleep ; Label and operation

incf 6,1 ; Operation with 2 parameters
goto loop ; Operation with 1 parameter

3.2.2 Expressions

gpasm supports a full set of operators, based on the C operator set. The operators in the following table
are arranged in groups of equal precedence, but the groups are arranged in order of increasing precedence.
When gpasm encounters operators of equal precedence, it always evaluates from left to right.

CHAPTER 3. GPASM 18

Operator Description

= assignment

|| logical or

&& logical and

& bitwise and
| bitwise or
^ bitwise exclusive-or

< less than
> greater than

== equals
!= not equals
>= greater than or equal
<= less than or equal

<< left shift
>> right shift

+ addition
- subtraction

* multiplication
/ division

% modulo

UPPER upper byte
HIGH high byte
LOW low byte

- negation
! logical not
~ bitwise no

Any symbol appearing in column 1 may be assigned a value using the assignment operator (=) in the
previous table. Additionally, any value previously assigned may be modified using one of the operators
in the table below. Each of these operators evaluates the current value of the symbol and then assigns a
new value based on the operator.

Operator Description

= assignment
++ increment by 1
– decrement by 1

+= increment
-= decrement
*= multiply
/= divide

%= modulo
<<= left shift
>>= right shift
&= bitwise and
|= bitwise or
^= bitwise exclusive-or

3.2.3 Numbers

gpasm gives you several ways of specifying numbers. You can use a syntax that uses an initial character
to indicate the number’s base. The following table summarizes the alternatives. Note the C-style option
for specifying hexadecimal numbers.

CHAPTER 3. GPASM 19

base general syntax 21 decimal written as

binary B’[01]*’ B’10101’
octal O’[0-7]*’ O’25’

decimal D’[0-9]*’ D’21’
hex H’[0-F]*’ H’15’
hex 0x[0-F]* 0x15

When you write a number without a specifying prefix such as “45”, gpasm uses the current radix (base)
to interpret the number. You can change this radix with the RADIX directive, or with the “-r” option on
gpasm’s command-line. If you do not start hexadecimal numbers with a digit, gpasm will attempt to
interpret what you’ve written as an identifier. For example, instead of writing C2, write either 0C2, 0xC2
or H’C2’.

Case is not significant when interpreting numbers: 0ca, 0CA, h’CA’ and H’ca’ are all equivalent.
Several legacy mpasm number formats are also supported. These formats have various shortcomings,

but are still supported. The table below summarizes them.

base general syntax 21 decimal written as

binary [01]*b 10101b
octal q’[0-7]*’ q’25’
octal [0-7]*o 25o
octal [0-7]*q 25q

decimal 0-9]*d 21d
decimal .[0-9]* .21

hex [0-F]*h 15h

You can write the ASCII code for a character X using ’X’, or A’X’.

3.2.4 Preprocessor

A line such as:

include foo.inc

will make gpasm fetch source lines from the file “foo.inc” until the end of the file, and then return to the
original source file at the line following the include.

Lines beginning with a “#” are preprocessor directives, and are treated differently by gpasm. They
may contain a “#define”, or a “#undefine” directive.

Once gpasm has processed a line such as:

#define X Y

every subsequent occurrence of X is replaced with Y, until the end of file or a line

#undefine X

appears.
The preprocessor will replace an occurance of #v(expression) in a symbol with the value of “expres-

sion” in decimal. In the following expression:

number equ 5
label_#v((number +1) * 5)_suffix equ 0x10

gpasm will place the symbol “label_30_suffix” with a value of 0x10 in the symbol table.
The preprocessor in gpasm is only like the C preprocessor; its syntax is rather different from that of

the C preprocessor. gpasm uses a simple internal preprocessor to implement “include”, “#define” and
“#undefine”.

CHAPTER 3. GPASM 20

3.2.5 Processor header files

gputils distributes the Microchip processor header files. These files contain processor specific data that is
helpful in developing PIC applications. The location of these files is reported in the gpasm help message.
Use the INCLUDE directive to utilize the appropriate file in your source code. Only the name of the file
is required. gpasm will search the default path automatically.

3.3 Directives

3.3.1 Code generation

In absolute mode, use the ORG directive to set the PIC memory location where gpasm will start assembling
code. If you don’t specify an address with ORG, gpasm assumes 0x0000. In relocatable mode, use the
CODE directive.

3.3.2 Configuration

You can choose the fuse settings for your PIC implementation using the __CONFIG directive, so that
the hex file set the fuses explicitly. Naturally you should make sure that these settings match your PIC
hardware design.

The __MAXRAM and __BADRAM directives specify which RAM locations are legal. These direc-
tives are mostly used in processor-specific configuration files.

3.3.3 Conditional assembly

The IF, IFNDEF, IFDEF, ELSE and ENDIF directives enable you to assemble certain sections of code
only if a condition is met. In themselves, they do not cause gpasm to emit any PIC code. The example in
section 3.3.4 for demonstrates conditional assembly.

3.3.4 Macros

gpasm supports a simple macro scheme; you can define and use macros like this:

any macro parm
movlw parm
endm

...
any 33

A more useful example of some macros in use is:

; Shift reg left, result (w or f) in ’dst’
slf macro reg,dst

clrc
rlf reg,f

endm

; Scale W by “factor”. Result in “reg”, W unchanged.
scale macro reg, factor

if (factor == 1)
movwf reg ; 1 X is easy

else
scale reg, (factor / 2) ; W * (factor / 2)
slf reg,f ; double reg
if ((factor & 1) == 1) ; if lo-bit set ..

addwf reg,f ; .. add W to reg

CHAPTER 3. GPASM 21

endif
endif

endm

This recursive macro generates code to multiply W by a constant “factor”, and stores the result in “reg”.
So writing:

scale tmp,D’10’

is the same as writing:

movwf tmp ; tmp = W
clrc
rlf tmp,f ; tmp = 2 * W
clrc
rlf tmp,f ; tmp = 4 * W
addwf tmp,f ; tmp = (4 * W) + W = 5 * W
clrc
rlf tmp,f ; tmp = 10 * W

3.3.5 $

$ expands to the address of the instruction currently being assembled. If it’s used in a context other than
an instruction, such as a conditional, it expands to the address the next instruction would occupy, since the
assembler’s idea of current address is incremented after an instruction is assembled. $ may be manipulated
just like any other number:

$
$ + 1
$ - 2

and can be used as a shortcut for writing loops without labels.

LOOP: BTFSS flag,0x00
GOTO LOOP
BTFSS flag,0x00
GOTO $ - 1

3.3.6 Suggestions for structuring your code

Nested IF operations can quickly become confusing. Indentation is one way of making code clearer.
Another way is to add braces on IF, ELSE and ENDIF, like this:

IF (this) ; {
...

ELSE ; }{
...

ENDIF ; }

After you’ve done this, you can use your text editor’s show-matching-brace to check matching parts of the
IF structure. In vi this command is “%”, in emacs it’s M-C-f and M-C-b.

3.3.7 Directive summary

__BADRAM

__BADRAM <expression> [, <expression]*

Instructs gpasm that it should generate an error if there is any use of the given RAM locations. Specify a
range of addresses with <lo>-<hi>. See any processor-specific header file for an example.

See also: __MAXRAM

CHAPTER 3. GPASM 22

__CONFIG

__CONFIG <expression>

Sets the PIC processor’s configuration fuses.

__IDLOCS

__IDLOCS <expression> or __IDLOCS <expression1>,<expression2>

Sets the PIC processor’s identification locations. For 12 and 14 bit processors, the four id locations are set
to the hexadecimal value of expression. For 18cxx devices idlocation expression1 is set to the hexadecimal
value of expression2.

__MAXRAM

__MAXRAM <expression>

Instructs gpasm that an attempt to use any RAM location above the one specified should be treated as an
error. See any processor specific header file for an example.

See also: __BADRAM

BANKISEL

BANKISEL <label>

This directive generates bank selecting code for indirect access of the address specified by <label>. The
directive is not available for all devices. It is only available for 14 bit and 16 bit devices. For 14 bit
devices, the bank selecting code will set/clear the IRP bit of the STATUS register. It will use MOVLB or
MOVLR in 16 bit devices.

See also: BANKSEL, PAGESEL

BANKSEL

BANKSEL <label>

This directive generates bank selecting code to set the bank to the bank containing <label>. The bank
selecting code will set/clear bits in the FSR for 12 bit devices. It will set/clear bits in the STATUS register
for 14 bit devices. It will use MOVLB or MOVLR in 16 bit devices. MOVLB will be used for enhanced
16 bit devices.

See also: BANKISEL, PAGESEL

CBLOCK

CBLOCK [<expression>]
<label>[:<increment>][,<label>[:<increment>]]

ENDC

Marks the beginning of a block of constants <label>. gpasm allocates values for symbols in the block
starting at the value <expression> given to CBLOCK. An optional <increment> value leaves space after
the <label> before the next <label>.

See also: EQU

CHAPTER 3. GPASM 23

CODE

<label> CODE <expression>

Only for relocatable mode. Creates a new machine code section in the output object file. <label> specifies
the name of the section. If <label> is not specified the default name “.code” will be used. <expression> is
optional and specifies the absolute address of the section.

See also: IDATA, UDATA

CONSTANT

CONSTANT <label>=<expression> [, <label>=<expression>]*

Permanently assigns the value obtained by evaluating <expression> to thesymbol <label>. Similar to SET
and VARIABLE, except it can not be changed once assigned.

See also: EQU, SET, VARIABLE

DA

<label> DA <expression> [, <expression]*

Stores Strings in program memory. The data is stored as one 14 bit word representing two 7 bit ASCII
characters.

See also: DT

DATA

DATA <expression> [, <expression]*

Generates the specified data.
See also: DA, DB, DE, DW

DB

<label> DB <expression> [, <expression]*

Declare data of one byte. The values are packed two per word.
See also: DA, DATA, DE, DW

DE

<label> DE <expression> [, <expression]*

Define EEPROM data. Each character in a string is stored in a separate word.
See also: DA, DATA, DB, DW

DT

DT <expression> [, <expression]*

Generates the specified data as bytes in a sequence of RETLW instructions.
See also: DATA

DW

<label> DW <expression> [, <expression]*

Declare data of one word.
See also: DA, DATA, DB, DW

CHAPTER 3. GPASM 24

ELSE

ELSE

Marks the alternate section of a conditional assembly block.
See also: IF, IFDEF, IFNDEF, ELSE, ENDIF

END

END

Marks the end of the source file.

ENDC

ENDC

Marks the end of a CBLOCK.
See also: CBLOCK

ENDIF

ENDIF

Ends a conditional assembly block.
See also: IFDEF, IFNDEF, ELSE, ENDIF

ENDM

ENDM

Ends a macro definition.
See also: MACRO

ENDW

ENDW

Ends a while loop.
See also: WHILE

EQU

<label> EQU <expression>

Permanently assigns the value obtained by evaluating <expression> to the symbol <label>. Similar to SET
and VARIABLE, except it can not be changed once assigned.

See also: CONSTANT, SET

ERROR

ERROR <string>

Issues an error message.
See also: MESSG

CHAPTER 3. GPASM 25

ERRORLEVEL

ERRORLEVEL {0 | 1 | 2 | +<msgnum> | -<msgnum>}[, ...]

Sets the types of messages that are printed.

Setting Affect

0 Messages, warnings and errors printed.
1 Warnings and error printed.
2 Errors printed.

-<msgnum> Inhibits the printing of message <msgnum>.
+<msgnum> Enables the printing of message <msgnum>.

See also: LIST

EXTERN

EXTERN <symbol> [, <symbol>]*

Only for relocatable mode. Delcare a new symbol that is defined in another object file.
See also: GLOBAL

EXITM

EXITM

Immediately return from macro expansion during assembly.
See also: ENDM

EXPAND

EXPAND

Expand the macro in the listing file.
See also: ENDM

FILL

<label> FILL <expression>,<count>

Generates <count> occurrences of the program word or byte <expression>. If expression is enclosed by
parentheses, expression is a line of assembly.

See also: DATA DW ORG

GLOBAL

GLOBAL <symbol> [, <symbol>]*

Only for relocatable mode. Delcare a symbol as global.
See also: GLOBAL

IDATA

<label> IDATA <expression>

Only for relocatable mode. Creates a new initialized data section in the output object file. <label> specifies
the name of the section. If <label> is not specified the default name “.idata” will be used. <expression> is
optional and specifies the absolute address of the section. Data memory is allocated and the initialization
data is placed in ROM. The user must provide the code to load the data into memory.

See also: CODE, UDATA

CHAPTER 3. GPASM 26

IF

IF <expression>

Begin a conditional assembly block. If the value obtained by evaluating <expression> is true (i.e. non-
zero), code up to the following ELSE or ENDIF is assembled. If the value is false (i.e. zero), code is not
assembled until the corresponding ELSE or ENDIF.

See also: IFDEF, IFNDEF, ELSE, ENDIF

IFDEF

IFDEF <symbol>

Begin a conditional assembly block. If <symbol> appears in the symbol table, gpasm assembles the
following code.

See also: IF, IFNDEF, ELSE, ENDIF

IFNDEF

IFNDEF <symbol>

Begin a conditional assembly block. If <symbol>does not appear in the symbol table, gpasm assembles
the following code.

See also: IF, IFNDEF, ELSE, ENDIF

LIST

LIST <expression> [, <expression>] *

Enables output to the list (“.lst”) file. All arguments are interpreted as decimal regardless of the current
radix setting. “list n=0” may be used to prevent page breaks in the code section of the list file. Other
options are listed in the table below:

option description

b=nnn Sets the tab spaces
f=<format> Set the hex file format. Can be inhx8m, inhx8s, inhx16, or inhx32.

mm=[ON|OFF] Memory Map on or off
n=nnn Sets the number of lines per page

p = <symbol> Sets the current processor
r= [oct | dec | hex] Sets the radix
st = [ON | OFF] Symbol table dump on or off

w=[0 | 1| 2] Sets the message level.
x=[ON|OFF] Macro expansion on or off

See also: NOLIST, RADIX, PROCESSOR

LOCAL

LOCAL <symbol>[[=<expression>], [<symbol>[=<expression>]]*]

Declares <symbol> as local to the macro that’s currently being defined. This means that further occur-
rences of <symbol> in the macro definition refer to a local variable, with scope and lifetime limited to the
execution of the macro.

See also: MACRO, ENDM

CHAPTER 3. GPASM 27

MACRO

<label> MACRO [<symbol> [, <symbol>]*]

Declares a macro with name <label>. gpasm replaces any occurrences of <symbol> in the macro definition
with the parameters given at macro invocation.

See also: LOCAL, ENDM

MESSG

MESSG <string>

Writes <string> to the list file, and to the standard error output.
See also: ERROR

NOEXPAND

NOEXPAND

Turn off macro expansion in the list file.
See also: EXPAND

NOLIST

NOLIST

Disables list file output.
See also: LIST

ORG

ORG <expression>

Sets the location at which instructions will be placed. If the source file does not specify an address with
ORG, gpasm assumes an ORG of zero.

PAGE

PAGE

Causes the list file to advance to the next page.
See also: LIST

PAGESEL

PAGESEL <label>
GOTO <label>

This directive will generate page selecting code to set the page bits to the page containing the designated
<label>. The page selecting code will set/clear bits in the STATUS for 12 bit devices. For 14 bit and
16 bit devices, it will generate MOVLW and MOVWF to modify PCLATH. The directive is ignored for
enhanced 16 bit devices.

See also: BANKISEL, BANKSEL

CHAPTER 3. GPASM 28

PROCESSOR

PROCESSOR <symbol>

Selects the target processor. See section ?? for more details.
See also: LIST

RADIX

RADIX <symbol>

Selects the default radix from “oct” for octal, “dec” for decimal or “hex” for hexadecimal. gpasm uses
this radix to interpret numbers that don’t have an explicit radix.

See also: LIST

RES

RES <mem_units>

Causes the memory location pointer to be advanced <mem_units>. Can be used to reserve data storage.
See also: FILL, ORG

SET

<label> SET <expression>

Temporarily assigns the value obtained by evaluating <expression> to the symbol <label>.
See also: SET

SPACE

SPACE <expression>

Inserts <expression> number of blank lines into the listing file.
See also: LIST

SUBTITLE

SUBTITLE <string>

This directive establishes a second program header line for use as a subtitle in the listing output. <string>
is an ASCII string enclosed by double quotes, no longer than 60 characters.

See also: TITLE

TITLE

TITLE <string>

This directive establishes a program header line for use as a title in the listing output. <string> is an ASCII
string enclosed by double quotes, no longer than 60 characters.

See also: SUBTITLE

UDATA

<label> UDATA <expression>

Only for relocatable mode. Creates a new uninitialized data section in the output object file. <label>
specifies the name of the section. If <label> is not specified the default name “.udata” will be used.
<expression> is optional and specifies the absolute address of the section.

See also: CODE, IDATA, UDATA_ACS, UDATA_OVR, UDATA_SHR

CHAPTER 3. GPASM 29

UDATA_ACS

<label> UDATA_ACS <expression>

Only for relocatable mode. Creates a new uninitialized accessbank data section in the output object file.
<label> specifies the name of the section. If <label> is not specified the default name “.udata_acs” will be
used. <expression> is optional and specifies the absolute address of the section.

See also: CODE, IDATA, UDATA

UDATA_OVR

<label> UDATA_OVR <expression>

Only for relocatable mode. Creates a new uninitialized overlaid data section in the output object file.
<label> specifies the name of the section. If <label> is not specified the default name “.udata_ovr” will be
used. <expression> is optional and specifies the absolute address of the section.

See also: CODE, IDATA, UDATA

UDATA_SHR

<label> UDATA_SHR <expression>

Only for relocatable mode. Creates a new uninitialized sharebank data section in the output object file.
<label> specifies the name of the section. If <label> is not specified the default name “.udata_shr” will be
used. <expression> is optional and specifies the absolute address of the section.

See also: CODE, IDATA, UDATA

VARIABLE

VARIABLE <label>[=<expression>, <label>[=<expression>]]*

Delcares variable with the name <label>. The value of <label> may later be reassigned. The value of
<label> does not have to be assigned at declaration.

See also: CONSTANT

WHILE

WHILE <expression>

Performs loop while <expression> is true.
See also: ENDW

3.4 Instructions

CHAPTER 3. GPASM 30

3.4.1 Instruction set summary

12 bit Devices (PIC12C5XX)

Syntax Description

ADDWF <f>,<dst> Add W to <f>, result in <dst>
ANDLW <f>,<dst> And W and literal, result in W
ANDWF <f>,<dst> And W and <f>, result in <dst>
BCF <f>,<bit> Clear <bit> of <f>
BSF <f>,<bit> Set <bit> of <f>
BTFSC <f>,<bit> Skip next instruction if <bit> of <f> is clear
BTFSS <f>,<bit> Skip next instruction if <bit> of <f> is set
CALL <addr> Call subroutine
CLRF <f>,<dst> Write zero to <dst>
CLRW Write zero to W
CLRWDT Reset watchdog timer
COMF <f>,<dst> Complement <f>, result in <dst>
DECF <f>,<dst> Decrement <f>, result in <dst>
DECFSZ <f>,<dst> Decrement <f>, result in <dst>, skip if zero
GOTO <addr> Go to <addr>
INCF <f>,<dst> Increment <f>, result in <dst>
INCFSZ <f>,<dst> Increment <f>, result in <dst>, skip if zero
IORLW <f>,<dst> Or W and <f>, result in <dst>
MOVF <f>,<dst> Move <f> to <dst>
MOVLW <imm8> Move literal to W
MOVWF <f> Move W to <f>
NOP No operation
OPTION
RETLW <imm8> Load W with immediate and return
RLF <f>,<dst> Rotate <f> left, result in <dst>
RRF <f>,<dst> Rotate <f> right, result in <dst>
SLEEP Enter sleep mode
SUBWF <f>,<dst> Subtract W from <f>, result in <dst>
SWAPF <f>,<dst> Swap nibbles of <f>, result in <dst>
TRIS
XORLW Xor W and <f>, result in <dst>
XORWF Xor W and immediate

CHAPTER 3. GPASM 31

14 Bit Devices (PIC16CXX)

Syntax Description

ADDLW <imm8> Add immediate to W
ADDWF <f>,<dst> Add W to <f>, result in <dst>
ANDLW <f>,<dst> And W and <f>, result in <dst>
BCF <f>,<bit> Clear <bit> of <f>
BSF <f>,<bit> Set <bit> of <f>
BTFSC <f>,<bit> Skip next instruction if <bit> of <f> is clear
BTFSS <f>,<bit> Skip next instruction if <bit> of <f> is set
CALL <addr> Call subroutine
CLRF <f>,<dst> Write zero to <dst>
CLRW Write zero to W
CLRWDT Reset watchdog timer
COMF <f>,<dst> Complement <f>, result in <dst>
DECF <f>,<dst> Decrement <f>, result in <dst>
DECFSZ <f>,<dst> Decrement <f>, result in <dst>, skip if zero
GOTO <addr> Go to <addr>
INCF <f>,<dst> Increment <f>, result in <dst>
INCFSZ <f>,<dst> Increment <f>, result in <dst>, skip if zero
IORLW <f>,<dst> Or W and <f>, result in <dst>
MOVF <f>,<dst> Move <f> to <dst>
MOVLW <imm8> Move literal to W
MOVWF <f> Move W to <f>
NOP No operation
OPTION
RETFIE Return from interrupt
RETLW <imm8> Load W with immediate and return
RETURN Return from subroutine
RLF <f>,<dst> Rotate <f> left, result in <dst>
RRF <f>,<dst> Rotate <f> right, result in <dst>
SLEEP Enter sleep mode
SUBLW Subtract W from literal
SUBWF <f>,<dst> Subtract W from <f>, result in <dst>
SWAPF <f>,<dst> Swap nibbles of <f>, result in <dst>
TRIS
XORLW Xor W and <f>, result in <dst>
XORWF Xor W and immediate

Ubicom Processors

For Ubicom (Scenix) processors, the assembler supports the following instructions, in addition to those
listed under “12 Bit Devices” above.

Syntax Description

BANK <imm3>
IREAD
MODE <imm4>
MOVMW
MOVWM
PAGE <imm3>
RETI
RETIW
RETP
RETURN

CHAPTER 3. GPASM 32

Special macros

There are also a number of standard additional macros. These macros are:
Syntax Description

ADDCF <f>,<dst> Add carry to <f>, result in <dst>
B <addr> Branch
BC <addr> Branch on carry
BZ <addr> Branch on zero
BNC <addr> Branch on no carry
BNZ <addr> Branch on not zero
CLRC Clear carry
CLRZ Clear zero
SETC Set carry
SETZ Set zero
MOVFW <f> Move file to W
NEGF <f> Negate <f>
SKPC Skip on carry
SKPZ Skip on zero
SKPNC Skip on no carry
SKPNZ Skip on not zero
SUBCF <f>,<dst> Subtract carry from <f>, result in <dst>
TSTF <f> Test <f>

3.5 Errors/Warnings/Messages

gpasm writes every error message to two locations:

� the standard error output

� the list file (“.lst”)

The format of error messages is:

Error <src-file> <line> : <code> <description>

where:

<src-file> is the source file where gpasm encountered the error

<line> is the line number

<code> is the 3-digit code for the error, given in the list below

<description> is a short description of the error. In some cases this contains further information about
the error.

Error messages are suitable for parsing by emacs’ “compilation mode”. This chapter lists the error mes-
sages that gpasm produces.

3.5.1 Errors

101 ERROR directive

A user-generated error. See the ERROR directive for more details.

114 Divide by zero

gpasm encountered a divide by zero.

CHAPTER 3. GPASM 33

115 Duplicate Label

Duplicate label or redefining a symbol that can not be redefined.

124 Illegal Argument

gpasm encountered an illegal argument in an expression.

125 Illegal Condition

An illegal condition like a missing ENDIF or ENDW has been encountered.

126 Argument out of Range

The expression has an argument that was out of range.

127 Too many arguments

gpasm encountered an expression with too many arguments.

128 Missing argument(s)

gpasm encountered an expression with at least one missing argument.

129 Expected

Expected a certain type of argument.

130 Processor type previously defined

The processor is being redefined.

131 Undefined processor

The processor type has not been defined.

132 Unknown processor

The selected processor is not valid. Check the processors listed in section ??.

133 Hex file format INHX32 required

An address above 32K was specified.

135 Macro name missing

A macro was defined without a name.

136 Duplicate macro name

A macro name was duplicated.

145 Unmatched ENDM

ENDM found without a macro definition.

159 Odd number of FILL bytes

In PIC18CXX devices the number of bytes must be even.

CHAPTER 3. GPASM 34

3.5.2 Warnings

201 Symbol not previously defined.

The symbol being #undefined was not previously defined.

202 Argument out of range

The argument does not fit in the allocated space.

211 Extraneous arguments

Extra arguments were found on the line.

215 Processor superseded by command line

The processor was specified on the command line and in the source file. The command line has prece-
dence.

216 Radix superseded by command line

The radix was specified on the command line and in the source file. The command line has precedence.

217 Hex format superseded by command line

The hex file format was specified on the command line and in the source file. The command line has
precedence.

218 Expected DEC, OCT, HEX. Will use HEX.

gpasm encountered an invalid radix.

219 Invalid RAM location specified.

gpasm encountered an invalid RAM location as specified by the __MAXRAM and __BADRAM direc-
tives.

222 Error messages can not be disabled

Error messages can not be disabled using the ERRORLEVEL directive.

223 Redefining processor

The processor is being reselected by the LIST or PROCESSOR directive.

224 Use of this instruction is not recommanded

Use of the TRIS and OPTION instructions is not recommended for a PIC16CXX device.

3.5.3 Messages

301 User Message

User message, invoked with the MESSG directive.

303 Program word too large. Truncated to core size.

gpasm has encounter a program word larger than the core size of the selected device.

304 ID Locations value too large. Last four hex digits used.

CHAPTER 3. GPASM 35

The ID locations value specified is too large.

305 Using default destination of 1 (file).

No destination was specified so the default location was used.

308 Warning level superseded by command line

The warning level was specified on the command line and in the source file. The command line has
precedence.

309 Macro expansion superseded by command line

Macro expansion was specified on the command line and in the source file. The command line has
precedence.

Chapter 4

gplink

gplink relocates and links gpasm COFF objects and generates an absolute executable COFF.

4.1 Running gplink

The general syntax for running gplink is

gplink [options] [objects] [libraries]

Where options can be one of:

Option Meaning

a Produce hex file in one of four formats: inhx8m, inhx8s, inhx16, inhx32
(the default).

c Output an executable object.
d Display debug messages
f <value> Fill unused unprotected program memory with <value>.
h Show the help message
I <directory> Specify an include directory.
m Output a map file.
o <file> Alternate name of hex output file.
q Quiet.
s <file> Specify linker script.
v Print gplib version information and exit

4.2 gplink outputs

gplink creates an absolute executable COFF. From this COFF a hex file and cod file are created. The
executable COFF is only written when the “-c” option is added. This file is useful for simulating the
design with mpsim. The cod file is used for simulating with gpsim.

gplink can also create a map file. The map file reports the final addresses gplink has assigned to the
COFF sections. This is the same data that can be viewed in the executable COFF with gpvo.

4.3 Linker scripts

gplink requires a linker script. This script tells gplink what memory is available in the target processor.
A set of Microchip generated scripts are installed with gputils. These scripts were intended as a starting
point, but for many applications they will work as is.

36

CHAPTER 4. GPLINK 37

If the user does not specify a linker script, gplink will attempt to use the default script for the processor
reported in the object file. The default location of the scripts is reported in the gplink help message.

Chapter 5

gplib

gplib creates, modifies and extracts COFF archives. This allows a related group of objects to be combined
into one file. Then this one file is passed to gplink.

5.1 Running gplib

The general syntax for running gplib is

gplib [options] library [member]

Where options can be one of:

Option Meaning

c Create a new library
d Delete member from library
h Show the help message
n Don’t add the symbol index
q Quiet mode.
r Add or replace member from library.
s List global symbols in libary.
t List member in library
v Print gplib version information and exit
x Extract member from library

5.2 Creating an archive

The most common operation is to create a new archive:

gplib -c math.a mult.o add.o sub.o

This command will create a new archive “math.a” that contains “mult.o add.o sub.o”.
The name of the archive “math.a” is arbitrary. The tools do not use the file extension to determine file

type. It could just as easily been “math.lib” or “math”.
When you use the library, simply add it to the list of object passed to gplink. gplink will scan the library

and only extract the archive members that are required to resolve external references. So the application
won’t necessarily contain the code of all the archive members.

5.3 Other gplib operations

Most of the other are useful , but will be used much less often. For example you can replace individual
archive members, but most people elect to delete the old archive and create a new one.

38

CHAPTER 5. GPLIB 39

5.4 Archive format

The file format is a standard COFF archive. A header is added to each member and the unmodified object
is copied into the archive.

Being a standard archive they do include a symbol index. It provides a simple why to determine which
member should be extract to resolve external references. This index is not included in mplib archives. So
using gplib archives with Microchip Tools will probably cause problems unles the “-n” option is added
when the archive is created.

Chapter 6

Utilities

6.1 gpdasm

gpdasm is a disassembler for gputils. It converts hex files generated by gpasm and gplink into disassem-
bled instructions.

6.1.1 Running gpdasm

The general syntax for running gpdasm is

gpdasm [options] hex-file

Where options can be one of:

Option Meaning

h Display the help message.
i Display hex file information
l List supported processors.
m Memory dump hex file.
p<processor> Select processor.
s Print short form output
v Print gpasm version information and exit.

gpdasm doesn’t specifically create an output file. It dumps its output to the screen. This helps to
reduce the risk that a good source file will be unintentionally overwritten. If you want to create an output
file and your shell is “sh”, “bash” or “ksh”, you can do something like:

gpdasm test.hex > test.dis

This redirects standard output to the file “test.dis”.

6.1.2 Comments on Disassembling
� The gpdasm only uses a hex file as an input. Because of this it has no way to distinguish between

instructions and data in program memory.

� If gpdasm encounters an unknown instruction it uses the DW directive and treats it as raw data.

� There are DON’T CARE bits in the instruction words. Normally, this isn’t a problem. It could be,
however, if a file with data in the program memory space is disassembled and then reassembled.
Example: gpdasm will treat 0x0060 in a 14 bit device as a NOP. If the output is then reassembled,
gpasm will assign a 0x0000 value. The value has changed and both tools are behaving correctly.

40

CHAPTER 6. UTILITIES 41

6.2 gpvc

gpvc is cod file viewer for gputils. It provides an easy way to view the contents of the cod files generated
by gpasm and gplink.

6.2.1 Running gpvc

The general syntax for running gpvc is

gpvc [options] cod-file

Where options can be one of:

Option Meaning

a Display all information
d Display directory header
s Display symbols
h Show the help message.
r Display ROM
l Display source listing
m Display debug message area
v Print gpvc version information and exit.

gpvc doesn’t specifically create an output file. It dumps its output to the screen. If you want to create
an output file and your shell is “sh”, “bash” or “ksh”, you can do something like:

gpvc test.cod > test.dump

This redirects standard output to the file “test.dump”.

6.3 gpvo

gpvo is COFF object file viewer for gputils. It provides an easy way to view the contents of objects
generated by gpasm and gplink.

6.3.1 Running gpvo

The general syntax for running gpvo is

gpvo [options] object-file

Where options can be one of:

Option Meaning

b Binary data
f File header
h Show the help message
n Suppress filenames
s Section data
t Symbol data
v Print gpvo version information and exit

gpvo doesn’t specifically create an output file. It dumps its output to the screen. If you want to create
an output file and your shell is “sh”, “bash” or “ksh”, you can do something like:

gpvo test.obj > test.dump

This redirects standard output to the file “test.dump”.

Index

Archive format, 39
ASCII, 19

BADRAM, 21
BANKISEL, 22
BANKSEL, 22
bash, 17, 40, 41

case, 16
CBLOCK, 22
character, 19
CODE, 23
comments, 17
CONFIG, 22
CONSTANT, 23
Creating an archive, 38

DA, 23
DATA, 23
DB, 23
DE, 23
DT, 23
DW, 23

ELSE, 24
END, 24
ENDC, 24
ENDIF, 24
ENDM, 24
ENDW, 24
EQU, 24
ERROR, 24
error file, 17
ERRORLEVEL, 25
EXITM, 25
EXTERN, 25

FILL, 25

GLOBAL, 25
GNU, 4
gpal options, 6
gpasm options, 16
gpdasm, 40
gpvc, 41
gpvo, 41

hex file, 16

IDATA, 25
IDLOCS, 22
IF, 26
IFDEF, 26
IFNDEF, 26
include, 19

ksh, 17, 40, 41

labels, 17
License, 4
LIST, 26
LOCAL, 26

MACRO, 27
make, 17
MAXRAM, 22
MESSG, 27

NO WARRANTY, 4
NOEXPAND, 27
NOLIST, 27

operators, 17
ORG, 27
Other gplib operations, 38

PAGE, 27
PAGESEL, 27
PROCESSOR, 28

RADIX, 28
radix, 16, 18
RES, 28
Running gpdasm, 40
Running gplib, 38
Running gplink, 36
Running gpvc, 41
Running gpvo, 41

SET, 28
sh, 17, 40, 41
SPACE, 28
SUBTITLE, 28

tee, 17
TITLE, 28

42

INDEX 43

UDATA, 28
UDATA ACS, 29
UDATA OVR, 29
UDATA SHR, 29

VARIABLE, 29

WHILE, 29

