
1 What’s up with pbuilder?

This is a document to explain what is pbuilder, what has been happening re-
cently with pbuilder, and what will probably happen in the near future.

1.1 Concepts of using pbuilder

pbuilder create

pbuilder update

pbuilder build

pbuilder facilitates clean-room environment testing of
package building through using a chroot image and ex-
tracting a fresh chroot image for every build.

There are several simple commands for operation.
pbuilder create, pbuilder update, and pbuilder
build1 commands are the typical commands used. If
you need more details, see pbuilder manual, /usr/share/
doc/pbuilder/pbuilder-doc.html

When everything is set, pbuilder build will accept
.dsc file (the Debian source-package) and build the pack-
age inside the chroot.

operation operation frequency context
create once per base.tgz create the base filesystem
update once per day (unstable update) update the base filesystem
build once per package build the Debian package inside chroot

Let me examine a typical sequence of events in a day
of a Debian Developer.

1pdebuild command is often more convenient

1



maintainer
edits source

build package

bugreport new upstream package

install locally

test package

fail

pbuilder build

success

fail

test pbuilder-generated package

success

fail

debsign

success

dput

pbuilder is built in to the process as a checking system to ensure package
quality. 2 This is useful for initial testing of Build-Dependency, and as basic
regression testing framework.

1.2 pbuilder Development structure

Let me mention a little bit about how pbuilder itself is developed. Currently
pbuilder is co-maintained using resources provided by Alioth. Development is
done mostly by Löıc Minier and Junichi Uekawa, and occasional commits from
Matt Kraai, and Mattia Dongili.

Project page is available at http://alioth.debian.org/projects/pbuilder
and home page is available at, http://pbuilder.alioth.debian.org/ which
provides the pbuilder manual.

git is used for source code management, and the repository can be checked
out by any of the following commands3.

2This is an example. Some people do not build package locally and entirely work inside
chroots.

3ssh access requires account on alioth

2



git-clone git://git.debian.org/git/pbuilder/pbuilder.git
git-clone http://git.debian.org/git/pbuilder/pbuilder.git
git-clone ssh://git.debian.org/git/pbuilder/pbuilder.git

1.3 Derivatives and their status

There are several derivatives of pbuilder supporting different ’backends’. They
use different methods for providing a clean-room environment. Let me explain
some of them.

1.3.1 LVM port

Someone did a port to using LVM snapshot for base.tgz-management. There
was some e-mailing, but not quite gone into pbuilder. LVM method still uses
chroot as the method for segregation. The advantage is that LVM snapshot
process is much faster than extracting a tar archive for base image.

1.3.2 user-mode-linux port

pbuilder-uml port exists. Apparently, it is working for most people. Mattia
Dongili and others have been actively working on this port.

base.tgz extraction is replaced with UML cow device support, and thus is
faster. chroot is replaced with user-mode-linux session, which makes system
calls a bit slower.

1.3.3 cowdancer port

Junichi Uekawa has been working on the port to cowdancer since 2005, and it
is somewhat stable. This replaces base.tgz extraction with cp -la , which is
much faster.

Because of the way cowdancer hooks libc calls like open/close, it may inter-
fere with package building. 4

1.3.4 qemu port

Junichi Uekawa has been working on the port to qemu/kqemu/kvm since early
2007. QEMU has COW block device support, so it eliminates the need to
extract base.tgz.

qemu port has an interesting advantage in that it adds cross-architecture-
building support for pbuilder. I can potentially build and test ARM packages
on my i386 box.

1.4 Further development ideas

1.4.1 Installation testing

There are other projects such as piuparts which can be leveraged by pbuilder.
pbuilder does provide example script for testing installation: /usr/share/

doc/pbuilder/examples/execute_installtest.sh.
4etch release unfortunately was faced with Bug 413912

3



pbuilder execute \
/usr/share/doc/pbuilder/examples/execute_installtest.sh \
pbuilder

This command will try to install the package using apt-get into the chroot.

1.4.2 Package testing

Package testing is a feature that is usually useful, especially since developer time
is limited, and repeated manual testing is no fun. pbuilder includes an exam-
ple hook script /usr/share/doc/pbuilder/examples/B92test-pkg which will
test package after a successful build.

The test files are shell scripts placed in debian/pbuilder-test/NN_name
(where NN is number) following run-parts standard for file names 5.

1.4.3 aptitude

pbuilder exclusively depends on apt-get. It might be time to look at what is
missing to get aptitude working.

1.4.4 apt-key support

pbuilder currently lacks apt-key support. Since apt-key support is definitely
available in the current stable releases, it is about time to start considering
supporting apt-key.

1.4.5 build-dependency parser

Build-dependency parser has been somewhat old and suboptimal. Löıc Minier
has been working on refreshing it.

1.4.6 buildd.net-like support

pbuilder creates a bunch of useful build logs, but it lacks the notion of history.
It does not have an infrastructure to aggregate and put them to use. 6 Collect-
ing past build logs even locally and comparing them between builds may alert
problems, used in conjunction with tools like debdiff.

1.5 References

• http://pbuilder.alioth.debian.org/ or /usr/share/doc/pbuilder/
pbuilder-doc.html: pbuilder manual

• cowdancer package

• piuparts package

• autodebtest: Ubuntu automatic testing system

• schroot / dchroot

• buildd

5no ’.’ in file names!
6Some projects to create pbuildd did exist, but I am not sure if it still exists today.

4


