17 #include <deal.II/base/polynomials_abf.h> 18 #include <deal.II/base/quadrature_lib.h> 23 DEAL_II_NAMESPACE_OPEN
30 std::vector<std::vector< Polynomials::Polynomial< double > > >
31 get_abf_polynomials (
const unsigned int k)
33 std::vector<std::vector< Polynomials::Polynomial< double > > > pols(dim);
37 for (
unsigned int d=1;
d<dim; ++
d)
40 for (
unsigned int d=1;
d<dim; ++
d)
51 polynomial_space(get_abf_polynomials<dim>(k)),
52 n_pols(compute_n_pols(k))
78 Assert(third_derivatives.size()==
n_pols|| third_derivatives.size()==0,
80 Assert(fourth_derivatives.size()==
n_pols|| fourth_derivatives.size()==0,
91 p_values.resize((values.size() == 0) ? 0 : n_sub);
92 p_grads.resize((grads.size() == 0) ? 0 : n_sub);
93 p_grad_grads.resize((grad_grads.size() == 0) ? 0 : n_sub);
97 for (
unsigned int d=0; d<dim; ++d)
111 for (
unsigned int c=0; c<dim; ++c)
112 p(c) = unit_point((c+d)%dim);
117 for (
unsigned int i=0; i<
p_values.size(); ++i)
120 for (
unsigned int i=0; i<
p_grads.size(); ++i)
121 for (
unsigned int d1=0; d1<dim; ++d1)
122 grads[i+d*n_sub][d][(d1+d)%dim] =
p_grads[i][d1];
125 for (
unsigned int d1=0; d1<dim; ++d1)
126 for (
unsigned int d2=0; d2<dim; ++d2)
127 grad_grads[i+d*n_sub][d][(d1+d)%dim][(d2+d)%dim]
131 for (
unsigned int d1=0; d1<dim; ++d1)
132 for (
unsigned int d2=0; d2<dim; ++d2)
133 for (
unsigned int d3=0; d3<dim; ++d3)
134 third_derivatives[i+d*n_sub][d][(d1+d)%dim][(d2+d)%dim][(d3+d)%dim]
138 for (
unsigned int d1=0; d1<dim; ++d1)
139 for (
unsigned int d2=0; d2<dim; ++d2)
140 for (
unsigned int d3=0; d3<dim; ++d3)
141 for (
unsigned int d4=0; d4<dim; ++d4)
142 fourth_derivatives[i+d*n_sub][d][(d1+d)%dim][(d2+d)%dim][(d3+d)%dim][(d4+d)%dim]
161 return 2*(k+3)*(k+1);
166 return 3*(k+3)*(k+1)*(k+1);
181 DEAL_II_NAMESPACE_CLOSE
std::vector< Tensor< 4, dim > > p_fourth_derivatives
static std::vector< Polynomial< double > > generate_complete_basis(const unsigned int degree)
std::vector< Tensor< 2, dim > > p_grad_grads
std::vector< Tensor< 1, dim > > p_grads
std::vector< double > p_values
std::vector< Tensor< 3, dim > > p_third_derivatives
static std::vector< Polynomial< double > > generate_complete_basis(const unsigned int degree)
#define Assert(cond, exc)
static::ExceptionBase & ExcDimensionMismatch(std::size_t arg1, std::size_t arg2)
SymmetricTensor< 2, dim, Number > d(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)
static unsigned int compute_n_pols(unsigned int degree)
static::ExceptionBase & ExcNotImplemented()
const AnisotropicPolynomials< dim > polynomial_space
void compute(const Point< dim > &unit_point, std::vector< Tensor< 1, dim > > &values, std::vector< Tensor< 2, dim > > &grads, std::vector< Tensor< 3, dim > > &grad_grads, std::vector< Tensor< 4, dim > > &third_derivatives, std::vector< Tensor< 5, dim > > &fourth_derivatives) const
PolynomialsABF(const unsigned int k)
static::ExceptionBase & ExcInternalError()