
Some learning approaches with FisPro

Fuzzy inference system (FIS) design from learning data follows two main
steps:

• Fuzzy partitioning of input and output variables, section 1

• Rule induction, section 2.

Partitions as well as rules can then be adjusted, section 4. AFIS can also be
simplified (section 5), to obtain incomplete rules (see glossary).

Learning programs are available as command lines and are also interfaced in
Java. The execution time is likely to increase very fast withthe data file size. This
is particularly true for the optimization and simplification procedures. In that case,
it is preferable to use the command line versions. All the command lines versions
can run in the background with the ouput redirected to a file.

SinceFisPro version 3.4, all learning programs, when called from com-
mand line, have a -wl option, that allows a silent (wordless)mode. Only error
messages will appear on the output.

Contents

1 Partitioning 6

2 Rule induction using the current FIS 10

3 Generate partitions and induce rules using OLS 15

4 Optimization 18

5 Simplification 19

6 Reducing the output vocabulary 21

7 Links 22

8 Sample generation 24

9 Performance 25

10 Check a data file 25

11 Result files of learning programs 26

1



Alphabetical list of the C++ programs available as command lines:

The following programs:genrules, fislinks, perf, readdata, sampleare util-
ity programs. Theother onesarelearningprograms.

Thefis program is aimed for developers of new Fispro modules. it corresponds
to thetestfis.cppsource program, located in the cpp/base subdirectory of fispro. it
gives example calls of Fispro C++ functions (refer to sourcecomments for more
details).

• fis: example of use of a FIS and a data file

• fisimple: simplify a FIS (see section 5)

• fisopt: optimize parts of a FIS (see section 4)

• fistree: generate fuzzy decision trees and the corresponding FIS (see section
2)

• fpa: generate the FIS rule conclusions (see section 2)

• genrules: generate the FIS rule premise from known input partitions (see
section 2)

• hfpcfg: create a HFP configuration file (see section 1)

• hfpfis: generate the FIS configuration file from the HFP configuration file
(see section 1)

• hfpselect: select the number of membership functions (MFs) per variable
(see section 1)

• hfpsr: generate a FIS configuration file without rules(see section1)

• hfpvertex: compute the MF centers from a HFP configuration file and a
data file (see section 1)

• fislinks: compute representative elements of links between a FIS rule premise
and data from a file (see section??)

• ols: generate rules using OLS (orthogonal least squares (see section 3)

• perf: compute the FIS performance relative to a data file (section9)

• readdata: check the reading of a text field separated data file (see section
10)

2



• sample: generate learning and test samples from a data file(section8).

• sethfpfis: edit a HFP configuration file

• vocreduc: reduce the FIS output vocabulary (see section 6)

• wm: generate FIS rules (premise and conclusion) (see section 2)

Note valid for all FisPro C++ programs:
A call without argument displays the program required and optional argu-

ments.

We start with a brief description of the different steps to follow, then we il-
lustrate the procedure on a data set. For each procedure, we give the command
line arguments in C++, and the corresponding option in the (java) graphical user
interface. User documentation gives more details about theinterface.

The result files mentioned in command lines are stored in the EXAMPLES
subdirectory.

Notations:

FIS=fuzzy inference system

MF=membership function

1. Partitioning

Partitions induced by FisPro are standardized fuzzy partitions (see glos-
sary), which guarantees that each fuzzy set corresponds to alinguistic label.
There is one exception: the Gaussian MF fuzzy partitions generated by the
OLS with the original algorithm from Hohensohn and Mendel

Three partition types are available: hfp, k-means, regular.

The easiest way is to use the ’Generate a FIS without rules’ option, which
allows to build input and output fuzzy partitions from data.A partition type,
common to all inputs, must be specified, as well as an output partition type.

TheLearningmenu has two options to generate the partitions:Generate a
FIS without rulesandHFP MF.

The easiest way is to use theGenerate a FIS without rulesoption, which
allows to build input and output fuzzy partitions from data.A partition
type, common to all inputs, must be specified, as well as an output partition

3



type. This option is also available in theFIS menu and in theOLSlearning
option.

The HFP MF option allows to choose the number of MFs per partition
according to the data. The algorithm starts from the simplest configuration,
complexifies it by adding a fuzzy set to the partition of one input variable,
and searches for the best performing configuration among themost compact
ones. In that case, the number of fuzzy sets per variable is not set a priori.

2. Rule induction

Several methods are available in FisPro to generate fuzzy rules:

• Generate all possible rules, then initialize rule conclusions using the
FPAmethod

• Use the Wang & Mendel (wm) algorithm

• Build a fuzzy decision tree and prune it if necessary

• Use theHFP MF algorithm

• Use theOLSalgorithm

The first three methods all need both a FIS configuration file, used to define
the fuzzy partitions, and a data file.

The HFP MF option is another method, that only needs a data fileand al-
lows to generate the rules corresponding to the HFP MF option(Learn-
ing/Partition menu). It needs two specific files: a HFP configuration file
and a vertex file, described in section 1. The algorithm starts from the sim-
plest configuration, and complexifies it by adding each time aMF in one
input dimension, and to search for the most accurate configuration among
the most compact ones. The number of MFs in each input dimension is not
known beforehand.

3. Generate partitions and induce rules using OLS

The OLSmethod can work using only data, first generating the partitions,
either standard fuzzy partitions made of triangular and trapezoidal MFs, or
Gaussian MF partitions, then generating the rules. It can also use a FIS
configuration file, then using the FIS partitions, and only generating the
rules.

4. Optimization

The optimization option of theLearningmenu allows to adjust the fuzzy set
parameters associated to the input or output variables, and/or to optimize the
rule conclusions.

4



5. Simplification

Last of all, thesimplificationoption of theLearningmenu attempts to sim-
plify the FIS by grouping rules together, or by removing somevariables
from the rule premises.

6. Reduce the output vocabulary

By output vocabulary, we mean the distinct fuzzy rule conclusions. Learn-
ing procedures often generate rules with as many conclusions as rules. For
more interpretability, these conclusions can be slightly modified to reduce
the number of distinct ones.

7. Links

We try to quantify links between fuzzy rules and data, by calculating the
rule cumulated matching degree for a data file, by giving the matched rules
for each row, and conversely by enumerating the examples matching each
rule.

8. Sampling

TheGenerate sampleoption of theDatamenu creates random learning/validation
samples from a data file.

9. Performance and data

This program, or option, allows to measure the FIS performance on a data
set.

Two test data sets are included.

The iris data (Fisher, 1936) are made up of four input variables: sepal
length, sepal width, petal length and petal width. The output is the iris
species: Setosa, Virginica or Versicolor. The sample includes 50 items of
each species.

The rice data (Ishibuchi, 1994) are sensory test data collected from a sub-
jective evaluation of many different kinds of rice by pluralpanelists. The
sample includes 105 items. The following five factors constitute the input
data: flavor, appearance, taste, stickiness, toughness, and the output factor
is the overall evaluation of quality.

10. Check data

Thereaddata program checks the data file reading: number of rows, num-
ber of columns, heading, field separator.

5



11. Learning result files

Each learning procedure creates several result data files. Two of these files
share a common format, and are detailed in section 11.

1 Partitioning

1. hfpsr generates a configuration file for a FIS. The number of fuzzy sets
must be specified for each input, and for the output, as well asthe hierarchy
types to use for inputs and output. The created FIS has no rules.

Java interface:

Learningmenu,Partitionssubmenu,Generate a FIS without rulesoption.

Command line, hfpsr program:

Arguments:

• the data file name

• the number of fuzzy sets for each input variable (string argument within
which numbers are delimited by spaces)

• the input hierarchy type: 1 for hfp, 2 for k-means, 3 for regular

• if value<1, the tolerance value, used to group input data into unique
values, or, if value>1, the number of groups for the k-means algorithm
(only used in the hfp hierarchy).

• the number of fuzzy sets for each output

• the output hierarchy type: 1 for hfp, 2 for k-means, 3 for regular

• the defuzzification operator: area, MeanMax or sugeno

• the disjunction operator: sum or max

• if value<1, the tolerance value, used to group output data into unique
values, or if value>1, the number of groups for the k-means algorithm
if value>1 (only used in the hfp hierarchy)

Options:

-oFIS’ where FIS is the output configuration file name (default: ’data
file name’-sr.fis)

-oConj where Conj is the disjunction operator(default: prod)

-vVertexFile where VertexFile is the vertex file (see hfpvertex, default:
vertices are computed and a file is created).

6



-f: sets the Classif=’yes’ output option

Command line example:

hfpsr iris ’3 3 3 3’ 1 0.01 3 3 MeanMax sum 0.01

Creates the file iris-sr.fis with 3 fuzzy sets per input variable, the hfp hierar-
chy type, and a regular grid of 3 fuzzy sets for the output.

or

hfpsr iris ’3 3 3 3’ 2 0.01 3 3 MeanMax sum 0.01 -oiriskm.fis

Creates the file iriskm.fis, where the input partitions are generated by the
k-means procedure.

hfpsr iris ’2 2 3 3’ 3 0 0 3 sugeno sum 0 -oirisreg.fis -f

Creates the file irisreg.fis, with 2 MF regular grids for the fist two inputs, 3
MF regular grids for the other two, and a crisp classificationoutput.

This program also creates the following work files: ’data filename’.hfp and
’data file name’.vertex.

2. Select partitions

This method requires several programs.

Java interface:

(a) Learningmenu,Partitionssubmenu,HFP MF submenu,Generate a
HFP fileandEdit a HFP fileoptions

(b) Learning menu, Partitions submenuHFP MF submenu,Generate
verticesoption.

Vertices can be viewed with theView verticesoption. The maximum
number of vertices generated for each input is specified in the HFP
(default value=7).

(c) Learningmenu,PartitionssubmenuHFP MF submenu,Select parti-
tion option.

Command lines:

(a) hfpcfg to create the HFP configuration file

Arguments:

• data file name

• number of columns to ignore. Typically 1, which means to ignore
the last column, representing the output.

7



Two optional parameters:

The ouput hfp file name (default value the data file name.hfp)

The hierarchy type:1 for hfp, 2 for k-means, 3 for a regular grid
(default value)

Command line examples:
hfpcfg iris 1

Creates the file iris.hfp with a regular grid hierarchy

or

hfpcfg iris 1 iriskm.hfp 2

Creates the file iriskm.hfp with a k-means hierarchy.

The default generated output is crisp, with respective aggregation and
defuzzification operators ’sum’ and ’sugeno’, and without the classifi-
cation option.

These parameters can be modified. For the iris data, the classification
option should be chosen, as the output is a variety.

(b) hfpvertex to calculate the fuzzy sets bounds in the various partitions

Arguments:

• data file name

• HFP configuration file name

Two optional parameters:

-oVertexFile where VertexFile is the name of the output vertex file
(default: vertices.’hierarchy type’, i.e. regular, kmeans ou hfp)

-kn This option only concerns the hfp hierarchy. If given, n is the
number of groups used to form the initial partition in the call to
the k-means algorithm. Otherwise, the initial partition isformed
by grouping data into unique values, according to the tolerance
given in the hfp configuration file.

Command line example:
hfpvertex iris iris.hfp

Creates the file vertices.regular, if the hierarchy is a regular grid

hfpvertex iris iriskm.hfp -oiris.vertices

Creates the file iris.vertices for the kmeans hierarchy

(c) hfpselectto automatically select the number of MFs per variable.

Arguments:

• the FIS configuration file name

8



• the data file name

Optional parameters:

-r: choose wm as rule induction method (default: fpa is used)
-tx where x is the strategy to determine the data subset used to ini-
tialize the rule conclusion, 0 for MIN, 1 for DEC (default value).
-my where y is the minimum matching degree (default value: 0.3)
-ez where z is the minimum cardinality (default value: 3)
-oFIS where FIS is the output FIS configuration filename (default
value ’system name’.fis)
-sw where w is the minimum cumulated weight for a rule to be
generated (0.0 default value)
-bc where c is the minimum coverage level(default value: 1.0, 100
%)
-nf where f is the initial number of fuzzy sets per variable (default
value: 1)
-ig ehere g is the maximum number of iterations (default value:
10)
-lFileV where FileV is the name of the vertex file, created by hf-
pvertex (default value: vertices.Hierarchy)
-pNum where Num is the output number (défault: 0)
-vFileTest where FileTest is the name of a data file used for vali-
dation (default value: the filename given in the second argument)

Command line example:
hfpselect iris iriskm.hfp -b0.7 -e2 -m0.3 -liris.sommets
This program creates two files called result and result.min.The first
one has as many lines as the number of attempts to complexify the FIS.
In the second one, only the configurations kept at each step appear
Reminder of the command lines for the partition selection proce-
dure:
- hfpcfg iris 1 iriskm.hfp 2
- hfpvertex iris iriskm.hfp
Set the output Classif flag to ’yes’ in the iriskm.hfp file.
- hfpselect iris iriskm.hfp -b0.7 -e2 -m0.3
The 10th line in the file result.min is as follows:

iris & 1.000000 & 0.766667 & -1.000000 & 5 & 2 & 3 & 3 & 3 & 1 &

As described in the user documentation, the four following fields5&
2 & 3 & 3 indicate the number of MFs per input variable.

9



2 Rule induction using the current FIS

The rule induction methods presented here use a FIS configuration file. All exist-
ing FIS rules are ignored.

1. FPA method

Two C++ programs are required,genrulesandfpa. In Java, they are com-
bined in theFPAoption (Learningmenu,Inductionsubmenu).They can also
be used independently, by first generating the rules, then their conclusions.

Java interface:

• FIS menu,Generate rulesoption

• FIS menu,Generate conclusionsoption (fpa is the default method.

Command lines:

• genrulesto generate the rules

Argument: FIS configuration file name

Optional arguments:

-fFISFile where File is the output FIS configuration filename(de-
fault value config.genere)

-r to remove work files

other options: associated to the call with a data file name (call
genrules without argument to get their description).

The created rules have a conclusion equal to one. They are stored in
a file called ’system name’.rules, this filename appears in the Rules
section of the output FIS configuration filename.

This program also creates an intermediate file called info.genere.

Command line example:
genrules iris-sr.fis

Creates the file config.genere.

or

genrules iriskm.fis -firiskmr.fis

Creates the file iriskmr.fis.

other example:

genrules irisreg.fis -firisregr.fis

Creates the file irisregr.fis

10



• fpa to set the rule conclusions

Arguments:

– the FIS configuration file name

– the data file name

Optional arguments:

-a for detailed display

-fFile where File is the output FIS configuration filename (default
value: config.fpa)

-sx where x is the strategy to determine the data subset used to ini-
tialize the rule conclusion, 0 for MIN, 1 for DEC (default value).

-dy where y is the minimum matching degree(default value: 0.3).

-ez where z is the minimum cardinality (default value: 3)

-r to remove work files

The meaning of these parameters is given in the user guide, section
Learning Menu, Generate conclusions. The number of generated rules
is highly dependent on them.

Command line example:
fpa iriskmr.fis iris

Creates the file config.fpa, which has 10 rules, while there were 81
(3*3*3*3) rules in iriskmr.fis.

or

fpa iriskmr.fis iris -d0.1 -e1 -firiskmrfpa.fis

which creates the file iriskmrf.fis with 27 rules.

other example:

fpa irisregr.fis iris -d0.0 -e1 -firisregfpa.fis

which creates the file irisregfpa.fis with 24 rules..

. These configuration files are usable in the inference process.

2. Wang & Mendel

Java Interface:

Learningmenu,Rule inductionsubmenu,wmoption

Command line

Thewm program requires the following arguments:

• the FIS configuration file name

11



• the data file name

Optional parameters:

-tfile data file used for performance calculation (default issecond ar-
gument)

-oFIS the output FIS file name (default value ’system name’wm.fis).

-sThresh activity threshold for performance calculation (default value=0.2)

-l ’No limit for output distinct values in data file’ (default=false)

Command line example

wm iriskmr.fis iris

Creates the file iriswm.fis with 20 rules

or

wm iriskmr.fis iris -owmiris.fis

which creates the same file called wmiris.fis

3. olswill be presented in the section 3.

4. Fuzzy decision tree

Java Interface: Learning menu, Rule induction submenu, Tree option

Command line, :fistree program

Thefistree program requires two arguments and has several optional argu-
ments.

Arguments:

• the FIS configuration file name

• the data file name

Optional parameters:

-oNum where Num is the output number (Default Value: 0, first out-
put)

-sx where x is the minimum membership for an item to be considered
as attracted by the node for entropy calculations (default value 0.2)

-xCard where Card is the minimum leaf cardinality (default=min(10,#rows/10))

-ty where y is the tolerance on the membership to the majorityclass
(default value 0.1)

12



-dn where n is the tree maximum depth (default value: 0, meansno
limit)

-gval where val is the minimum relative entropy/deviance gain for
splitting nodes (default value 1e-6)

-e0 absolute entropy gain, -e1 relative gain (default=absolute)

-gval where val is the minimum entropy/deviance relative gainen en-
tropie/deviance required to create a branch

-p0 no pruning, -p1 full split pruning according to a performance cri-
terion, -p2 leaf pruning according to a performance criterion (default
is no pruning)

-lw where w is the relative performance loss tolerated during tree prun-
ing (default value 0.0)

-vValidFile where ValidFile is the validation file name for performance
calculation during pruning (default is data file)

-a detailed display

-a0 semi detailed display

Tree building, as well as tree pruning, creates two files. Output filenames
are generated from the FIS configuration filename. The file with the .tree
suffix contains a tree summary, which can be viewed in the javainterface,
or studied in a text editor. The second file is the corresponding FIS config-
uration file. It has a .fis suffix.

A file called result.fistree is also created. It is similar to the file result.simple
created by the fisimple program (see 5), with some extra information spe-
cific to fuzzy trees.

The tree is a regression tree (used criterion=deviance) if the output declared
in the FIS configuration file is fuzzy, with non discrete MFs. Otherwise it
is a classification tree (used criterion=entropy), with inferred values corre-
sponding to crisp classes if the output is crisp, with the flagclassif=yes, or
else to fuzzy classes.

Command line example:

fistree iriskmr.fis iris -s0.3

Creates iriskmr.fis.sum.tree and iriskmr.fis.tree.fis, which has 9 rules.

fistree iriskmr.fis iris -s0.1 -p1 -l0.1

Creates the two files above, plus two files for the pruned tree,iriskmr.fis.prunedsum.tree
and iriskmr.fis.prunedtree.fis. In this case, the minimum membership thresh-

13



old is lower than in the previous example, which produces a tree with 34
rules before pruning and 4 after pruning.

5. HFPFIS

To generate the FIS configuration file corresponding to a given MF combi-
nation, two C++ programs are required, sethfpfis et hfpfis. InJava, they are
combined in a single option.

In C++:

• sethfpfis to create a customized hfp file, which can later be used as an
argument of hfpfis.

Three arguments are required:

– the input hfp configuration file

– the number of fuzzy sets per variable, given as a character string

– the output hfp configuration file

Command line example:
sethfpfis iriskm.hfp "5 2 3 3" irissel.hfp

Creates the file irissel.hfp

Java Interface:
Learning menu, Partitions submenu, HFP MF submenu, Edit HFPfile
option

• hfpfis to generate a FIS configuration file from the hfp configuration
file.
It requires the same arguments than hfpselect (except thosespecific to
iterative search in hfpselect).

Arguments:

the FIS configuration file name

the data file name

Optional arguments:

-r: choose wm as rule induction method (default: fpa is used)

-tx where x is the strategy to determine the data subset used to
initialize the rule conclusion, 0 for MIN, 1 for DEC (defaultvalue)

-my where y is the minimum matching degree (default value: 0.3).

-ez where z is the minimum cardinality (default value: 3)

-oFile where File is the output FIS configuration filename (default
’system name’.fis)

14



-sw where ww is the minimum cumulated weight for a rule to be
generated (0.0 default value)

-lFileV whereFileV is the name of the vertex file created by hf-
pvertex (default value: vertices.’Hierarchy’)

-pNum whereNum is the output number (default value: 0, first
output)

Command line example:
hfpfis iris irissel.hfp -b0.7 -e2 -m0.3 -oirissel.fis -liris.sommets

Creates the file irissel.fis with 13 rules.

3 Generate partitions and induce rules using OLS

The ols (Orthogonal Least Squares) program transforms each example from a
data file into a fuzzy rule, and selects the most important rules according to a least
square criterion. It uses linear regression and Gram-Schmidt orhtogonalization.
Once the rules selected, a second passage of the algorithm isdone to optimize the
rule conclusions. This algorithm is well suited to regression problems.

Java interface:
Learningmenu,Rule inductionsubmenu,OLSoption.
Command line, ols program:
A single argument:

• data file name

Options:

-nNumOutput: NumOutput to consider (default: 0=first output)

-oNbOutputs: NbOutputs is the number of outputs (default: 1)

-j: to use original algorithm (Hohensohn and Mendel) (default: not original
algo)

-tTol: Tol is a parameter used for partition generation.
2 cases: in the original algorithm, Tol is the Standard deviation used for
Gaussians(default: 0.05), otherwise Tol is the tolerance threshold to deter-
mine the MF centers. (default: 0.25)

-s: does not impose standard fuzzy partitions (default=standard fuzzy parti-
tions)

15



-fFISfile: FISfile is the input FIS configuration file
In that case the fuzzy partitions are kept
The rules are ignored, and will be replaced by generated rules, except if the
-x option is given.

-x: this option is useful only if the previous option is given(-fFISfile).
The program keeps the FIS partitions and rules, it only changes the rule
conclusions by a least square optimization procedure basedon the data file.
This option allows to optimize the rule conclusions of any FIS.

-gTotV: Total unexplained variance stop condition (default: 1 percent not
explained)

-qNrules: Number of selected rule stop condition (default:10000)

-v: to reduce output vocabulary (default: no reduction)

-i: this option is useful only with the previous option -v, 2 possibilities to
set rule conclusions (voir section 6)

i=0: the new rule conclusions will be chosen according to thedata file
i=1 (default value): the new rule conclusions will be chosenaccording to
the initial rule conclusions.

-dPerfLoss: PerfLoss is the relative performance degradation allowed by
vocabulary reduction (default: 0.1)

-mNConc:
NConc is the maximum number of elements allowed in the reduced vocab-
ulary (default=no limit)
IF BOTH PerfLoss AND NConc ARE GIVEN, PRIORITY TO NConc.

-l: fuzzify the ouput (works only if vocabulary is reduced).

-pTestFile: the data file name for the second pass (default: the same than
for the 1st pass)

-cOutputFIS: OutputFIS is the generated FIS file name (default: ’DataFile-
Name’.fis)

-r to remove temporary files (’data’.mat and summary.ols)

-btestdatafile: testdatafile is the data file used to compute performance (de-
fault: ’DataFileName’)

16



-eMumin: Mumin is the activity threshold to compute performance (default:
0.2)

-a: intermediate display (default: no display)

Command line example:
ols rice
The program creates 5 files:

• rice.ols.

Num Index VarExp VarCum

1, 18, 0.392840, 0.392840,
2, 102, 0.197165, 0.590004,
3, 85, 0.116578, 0.706582,
4, 8, 0.088941, 0.795523,
5, 64, 0.031271, 0.826794,
6, 31, 0.023540, 0.850334,
7, 25, 0.015977, 0.866311,
8, 100, 0.014835, 0.881146,
9, 20, 0.014392, 0.895538,
10, 49, 0.013351, 0.908889,
11, 28, 0.012675, 0.921563,
12, 35, 0.009627, 0.931191,
13, 1, 0.009520, 0.940711,
14, 2, 0.014960, 0.955671,
15, 42, 0.006941, 0.962613,
16, 16, 0.006291, 0.968903,
17, 34, 0.004313, 0.973216,
18, 71, 0.004237, 0.977453,
19, 13, 0.002217, 0.979671,
20, 79, 0.001903, 0.981573,
21, 53, 0.001852, 0.983426,
22, 14, 0.001719, 0.985144,
23, 4, 0.001735, 0.986879,
24, 12, 0.002596, 0.989475,
25, 10, 0.001168, 0.990643,

A line per induced rule.

For each line, the following columns:

17



1. rule number

2. data file row number used to build the rule

3. percentage of variance explained by the rule

4. cumulated percentage of explained variance

• rice.mat: data matching degree matrix

• irisrice.fis: generated FIS configuration file

• perf.ols: performance results (see section 11).

• result.olssummary (see section 11).

4 Optimization

Java Interface: Learningmenu,Optimizationsubmenu: Two options:

1. Custom Solis & Wetsoption.

2. Standard Solis & Wetsoption.

Command line, fisopt program:
Thefisopt program requires the following arguments:

• the FIS configuration file name

• the data file name

• the output FIS configuration file name

• the key

• the number of iterations

• the gaussian noise standard deviation

• the maximum number of constraint violations during one iteration

• the maximum number of failures

• the equality tolerance threshold between two fuzzy set bounds

Optional parameters:

18



-oNum where Num is the output number to optimize (default value=0, first
output)

-sn where n is an integer used as seed for the random generator

-mVal where Val is the minimum activity threshold to coonsider an item as
non blank (default value: 0.2)

-l1x where x is the first constant in the Solis Wetts algorithm

-l2y where y is the second constant in the Solis Wetts algorithm

-l3z where y is the thirs constant in the Solis Wetts algorithm

-cn to activate the minimum distance constraint between twoadjacent fuzzy
set bounds.

-cVal where Val is the relative tolerated loss of coverage (default: 0).

-kKey where Key is described below.

The key is a special parameter, that indicates the FIS elements to optimize, and
some constraints. The easiest way to generate it is to use thegraphical interface
to generate and display the key.

Command line example:
fisopt iriskmrfpa.fis iris irisoptinputs.fis 000000000000000000000000000001011111111111111

10 .025 1000 1000 .01
which optimizes the fuzzy set parameters of the input variables described in

the FIS configuration file irisregfpa.fis
or
fisopt rice.fis rice riceoptrules.fis 111111100000000000000000000000 100 .5

1000 1000 .1
which optimizes the rule conclusions for the FIS configuration file rice.fis, and

creates the output FIS configuration file nameed riceoptrules.fis.
Command line, loopoptim program:

This program is a wrapup for fisopt. See the optim-example.shscript for an
example of use.

5 Simplification

Java Interface:
Learningmenu,Simplificationoption.

19



Command line, fisimple program: The fisimple program tries to group rules
together, to remove rules or to eliminate some variables from a rule.

Arguments:

• the FIS configuration file name

• the data file name

Optional arguments:

-t performance test file name (default: data file name)

-pNum where Num is the output number (default value: 0, first output)

-bAbsCov where AbsCov is the absolute coverage level: tolerated percent-
age of blank samples (default: 0.1, 10

-cCovLoss where CovLoss is the relative tolerated loss of coverage during
rule removal (default: 0.0

-dAbsPerf where AbsPerf is the absolute maximum performance index (de-
fault: -1.0)

-ePerfLoss where PerfLoss is the tolerated loss of performance, percentage
of initial error (default: 0.1, 10

-hHomog where Homog is the output homogeneity threshold

-k do not keep the last rule with a given class or MF label as conclusion
(default: keep the last rule)

-r to remove work files

-a for detailed display

-q for rule removal

-l for variable removal

-tFileTest where FileTest is the name of a validation data file used for per-
formance calculations only (default value: the data file name)

-sMuMin where MuMin is the activation threshold for an item not to be
blank (default: 0.2), used for performance calculations only.

20



Remarks: the arguments -b and -c are exclusive, -b has priority over -c. The
arguments -d and -e are exclusive, -d has priority over -e.

Command line examples:
fisimple wmiris.fis iris
The program displays the message

’The most simple FIS: irissel.fis.jb.2’. The whole set of simplified FIS configura-
tions is given in the file result.simple. The simplest FIS is wmiris.fis.jb.2 which
has eleven rules.

or
fisimple iriskmr.fis.tree.fis iris
The simplest FIS is iriskmr.fis.tree.fis.jb.2 which has eleven rules.
fisimple rice.fis rice -q -l
The simplest FIS is rice.fis.jb.23 which has 9 rules.

6 Reducing the output vocabulary

In the case of a crisp regression output, the rule conclusionvalues are all different
from each other. Reducing the output vocabulary improves the readability of the
rule base.

Two choices are available. With the first one (default one), aclustering is per-
formed using the rule conclusions, with the second one it is done by using the data
file output values. The clustered values are chosen as the newrule conclusions.

The number of distinct conclusions can be set, or the tolerated loss of perfor-
mance. Indeed reducing the voabulary usually goes with a loss of accuracy.

Java interface:
FIS menu,Reduce the output vocabularyoption.
Command line, vocreduc program:
Argument:

• FIS configuration filename

• data filename

Options:

-oNumOutput where NumOutput is the output number (default:0=first out-
put)

-dType data used to make vocabulary reduction

– -d1: rule conclusions are generated by clustering the initial rule con-
clusions

21



– -d0: rule conclusions are generated by clustering the output data val-
ues in the data file

-lPerfLoss: PerfLoss is the relative performance loss allowed by vocabulary
reduction (default: 0.1)

-cConc: Conc is the number of elements in the reduced vocabulary (default:
10000).

Remark: these 2 argument default values are 0.1 for PerfLoss, which yields
an automatic determination of Conc.

-sMuMin where MuMin is the activity threshold for an item notto be blank
(default: 0.2)

-a: detailed output

Command line example
vocreduc rice.fis rice
The number of conclusions passes from 25 to 6.

7 Links

This utility allows to view the links between rules and sample items, and also the
links between the various rules.

Java interface:
Datamenu,Linksoption.
Les fichiers sont générés et visualisés dans des fenêtres texte.
Command line, fislinks program:
Argument:

• the data file name

Command line example:
fislinks iris.fis iris

It creates several work files, with a default name prefix equalto the data file-
name.

• rules.items

This file has as many lines as there are rules in the system, plus 2.

* First line: number of rules

22



* Second line: maximal number of items that activate a rule

* Third line: description of the first rule, i.e. the rule number (starting
from 1), cumulated weight, number of items that activate a rule (be-
yond a threshold parameter with default value equal to 1e-6)followed
by their number.

• items.rules

This file has as many lines as there are items in the data sample.

For each line, the item number (starting from 1), followed bythe rule num-
bers that are activated by it.

• rules.links

The notion of link between rules is useful to appreciate the consistency of a
rule base. If two rules are strongly linked, and have different conclusions,
then the inconsistency can come from an insufficiently specific input range
rule coverage. This situation can also correspond to an exception in the data
sample. The linkage level of theith rule with thejth rule is calculated as
follows:

Li,j =
Ni,j

Ni

Ni is the cardinal of the subsetEi of the items that activate theith rule,Ni,j

is the cardinal ofEi ∩ Ej .

This file is formatted as a square matrix, whose size is equal to the number
of rules. Thei, j cell gives the corresponding linkage level. Note: the matrix
is not symmetric.

• rules.sorted

if the sort option is selected, rules are sorted by cumulatedweight (which
represents their influence in the data sample).

Note: links do not depend on the FIS outputs.

23



8 Sample generation

Sampling generates learning and test samples from a data file.
Java interface: Datamenu,Generate sampleoption.
The files are generated in the FisPro working directory, or inthe bin subdirec-

tory of the FisPro root directory, depending on the operating system.
Command line, sample program:
Argument:

• the data file name

Optional arguments:

-nNs where Ns is the number of sample pairs (default value: 1 creates on
learning sample and one test sample

-pApp where App is the data file size ratio used to determine the learning
sample size (default value: 0.75)

-sSeed
the same Seed value will reproduce the same samples
(default value, 0 gives new random samples at each call)

-c to create samples which respect the class proportion in the data file

-oNumC
used with the -c option, to give the column number used to assign classes in
the data file (default value, last column)

-eTol
used with the -c option, Tol=tolerance to assign classes (default value: 1e-2)

-a for detailed display

Command line example:
sample iris -n4 -c
generates the 4 following files using the iris data file:
iris.lrn.sample.0,iris.lrn.sample.1,iris.tst.sample.0,iris.tst.sample.1, with class

proportions identical to the iris data (species 1,2,3).
The iris.lrn.sample.0 and iris.tst.sample.0 files form onelearning-test pair, the

other two files form a second one.

24



9 Performance

Java Interface:
Datamenu,Infer option.

Command line, perf program:
Theperf program calculates the FIS performance on a data set.
Arguments:

• the FIS configuration file

• the data file name

Optional arguments:

-nNum where Num is the output number (default value: 0, first output)

-sVal where Val is the minimum activity threshold to coonsider an item as
non blank (default value: 0.2)

-a for detailed display.

Command line example:
perf irissel.fis iris
returns the value 4 (misclassified items)
or
perf riceoptrules.fis rice
returns 0.004819 (index based on the quadratic error)
Perf creates the perf.res file, whose structure is describedin the user documen-

tation.

10 Check a data file

Note: only available as command line utility.
Command line, readdata program:
Thereaddataprogram reads a data file and detects the field separator.
Argument:

• the data file name.

Result:
The program gives the number of rows and columns and the column names

found in the heading (if present).

25



11 Result files of learning programs

The learning procedures cited below always create 2 files:result.nomprocand
perf.nomproc. The table gives the name correspondence between the procedure
names and the file names.

program name result file performance file
fisimple result.simple perf.simple
fisopt result.fisopt perf.fisopt
fistree result.fistree perf.fistree

fpa result.fpa perf.fpa
ols result.ols perf.ols
perf result.perf perf.res
wm result.wm perf.wm

Summary file

result.nomprocis a summary file. It has only one line which describes the gener-
ated FIS:

first column: initial FIS filename

second column: performance index

third column: coverage index

fourth column: max error

following columns: rule base characteristics

Rule base characteristics

• maxR : maximum possible number of rules according to the fuzzy partitions

• nR : number of rules

• maxVr: maximum variable number within a rule

• meanVr: average variable number within a rule

• nVar : maximum number of distinct variables used by a rule

• meanMF: average number of distinct variables used by a rule

• nClass: number of output classes/MFs

• nRc : number of rules per class/MF

26



Performance file

General Format
The first line of the result file is a column header. The possible labels are

defined in the file fis.h:

• "OBS": The observed output, part of the data set

• "INF": The inferred output

• "Al": Alarm risen while inferring (see below)

• "ClINF": Inferred class label, for crisp output and classification flag

• "CLAl": Alarm risen while inferring (see below)

• "Err": Difference between inferred and observed output

• "Bl": Blank flag, 1 if this item is considered as blank, o otherwise

• "CErr2": square cumulated error over the previous examples.

WARNING: The cumulated error does not take into account the blank ex-
amples.

The first column holds the observed output, if it is availablein the data file, as
inference can also be done without an observed output.
The second one gives, when the observed output value is available, the difference
between observed and inferred values.
A variable number of columns follows, depending on the output nature.

Output Classif Defuzzification Field # Available fields

crisp yes sugeno 4 infered v. Alarm infered class Alarm
crisp no sugeno 2 inferred v. Alarm
crisp MaxCrisp 2 inferred v. Alarm
fuzzy yes sugeno/area n+2 infered v. Alarm µ1, µ2 . . . µn

fuzzy no sugeno/area 2 infered v. Alarm
fuzzy yes MeanMax n+2 infered v. Alarm µ1, µ2 . . . µn

fuzzy no MeanMax 2 infered v. Alarm

Note: µ1, µ2 . . . µn are available if the example activates at least one rule. For
a fuzzy output defuzzified withsugenoou area operators, they are equal to the
inferred output value membership degrees to MF1, 2 . . . n. For a fuzzy output
defuzzified with aMeanMaxoperator, or for a crisp output obtained through a

27



MaxCrispoperator, they represent the matching degree of all possible outputs:
MF values for a fuzzy output, or real values for a crisp output.

The columnBl is 1 if the item is inactive, 0 otherwise. Finally, the last column
gives the current value of the performance index.

Available alarm values:
Integer values which depend on the defuzzification operator:

• NOTHING (Value 0): All types. Everything is normal.

• NO_ACTIVE_RULE (Value 1): All types. The example does not fire any
rule of the rule base.

• AMBIGUITY (Value 2): SugenoClassif (Crisp output) and MaxCrisp. The
difference between the two main classes is less than a threshold (default
value AMBIGU_THRES = 0.1).

• NON_CONNEX_AREA (Value 3): WeArea - Set when the area definedby
the fired fuzzy sets (threshold set to MIN_THRES = 0.1 by default) is non
connex.

• NON_CONNEX_SEGMENT (Value 4): MeanMax - Set when the max
corresponds to two fuzzy sets (with a tolerance threshold set by default to
EQUALITY_THRES = 0.1) and the resulting segment is non connex.

The performance function also computes the coverage index,which depends
on the minimum matching degree given as an argument.

28


