
Programming in Qed
A Tutorial

Robert Pike, Sean Jensen (ed.)

Table of Contents
1. Introduction. 1

2. Buffers. 3

3. Special Characters (1) . 6

4. Special Characters (2) . 10

5. Special Characters (3) . 17

6. Registers . 20

7. Control Structures . 25

8. Calling the Shell . 30

9. Programming (1) . 33

10. Programming (2) . 39

11. Final Comments . 46

12. Editor’s Notes . 47

12.1. Remarks . 47

12.2. History. 47

12.3. Resources . 47

1. Introduction
Qed is a programmable text editor, intended for use primarily by programmers. For the average
user, Qed's power will likely be unnecessary, even troublesome, and its use is discouraged. For a
knowledgeable user who is willing to learn how to use it properly, however, Qed is a powerful tool,
both when used as an editor or as a (rather idiosyncratic and low-level) programming language.

Qed is very nearly a superset of the University of Toronto UNIX version 6 editor, Ed, which is itself
a strict superset of standard Ed. This document assumes considerable familiarity with the standard
editor, and some acquaintance with the new features of the U. of T. version. The features of U. of T.
Ed not found in regular version 6 Ed include: the * address separator, two character error messages
(a query followed by a character which indicates the error, e.g. ?s for a failed substitution), a simple
undo u command, and a join j command of somewhat greater generality than the *PWB* version.
(The new features used in this tutorial will be briefly explained as they turn up.) There is an add-on
document for U. of T. Ed which describes the enhancements and modifications, at user level, made
at U. of T.

This tutorial is not a complete description of the capabilities of Qed. Rather, it is an attempt to
familiarize the programmer with the general ways in which Qed operates, emphasizing the
programming techniques which clarify and simplify its use. A full description of the commands and
features of Qed may be found in the manual section, qed(1).

Before beginning the discussion of Qed, some warning should be given. UNIX Ed is closely based
on a version of Qed, running under the GCOS operating system, which was written by Dennis
Ritchie and Ken Thompson. When Dennis Ritchie wrote Ed, he removed many of the features,
including most of the programming capabilities, but left in most of the text editing power. Although
the Qed described here is significantly more complex and powerful than Ed (and quite unrelated to
the GCOS Qed), its increase in power is not proportionate to its increase in complexity. In short, Ed
is a very powerful editor, and for general editing jobs quite sufficient. Qed simplifies some more
complicated tasks, and its multifile capability and programmability make many things possible
which cannot be done in Ed, but to use it well requires a fairly thorough understanding of its
operation, which is fairly intricate.

Qed has several drawbacks that should be admitted early. Qed programs can be difficult to read,
even if done carefully, since it operates at about the level of a particularly cryptic assembler. A
careless user can easily damage files using Qed incorrectly, but it is much harder to accidentally
cause trouble with the U. of T. Qed than earlier ones, as the implementors worked very hard at
safeguarding. The safeguards are strong enough that occasional users who desire a particular Qed
feature for one editing job need not feel in danger of making a serious mistake. Qed's power can
lead the user astray; it has far more power than is needed for most editing jobs. As an illustrative
but rather artificial example, consider the problem of reversing the lines of a file, so that the last
line appears at the top, and the first at the bottom, with the contents of the lines unchanged. At first,
this may seem a problem for Qed if it is only to be done once or twice (if it is to be done often, we
would certainly write a C program!), but it is very easy to do in Ed:

g/^/m0

1

(For readability’s sake, it will be the convention in this tutorial to show user input aligned with the
left margin, and editor output offset by a tab from the left margin. In actual practice on the terminal
screen, the editor output is left-aligned on the left margin, exactly as the input is.)

A second, slightly more complicated example is the problem of placing two columnar files, say files
generated by ls, alongside each other in a buffer. Ed can again do the job quite well:

$ ed file1
 142
.=
 15
r file2
 153
.=
 30
1ka
16,30 g/^/m'a\
+ka
g/^/ .,+j/ /

How does it work? After reading in the two files, each of 15 lines, the first line is marked (1ka). Then
each line in the second file is moved to the line marked a, setting dot to the moved line, and the
mark is transferred to the next line in the first file (+ka). The backslash in the global command line
is necessary to terminate the scan of the target address for the move. The last command joins each
line to the next, separated by a tab (the white space between the slashes on the join j command, a
facility in U. of T. Ed). Because the global command marks all lines for execution before running the
command list on any of the lines, after the join the second of each pair of lines has effectively
disappeared from the range of lines of the global, and each execution of the global command list
joins a line of the first file with its corresponding line in the second.

The above example demonstrates several things. First, Ed is considerably more powerful than most
of its users realize. When first given the problem, most users (including the author!) assume it is a
task best handled by Qed. Second, editor programming often requires the subtle interaction of
many commands: the global join is an excellent example. Therefore, debugging editor programs
can be difficult. (Qed has a tracing feature which greatly simplifies debugging in some cases.) Third,
editor programs are usually difficult to read and understand.

This preamble may sound discouraging, but it is only promoting realism. When used well and
carefully, Qed can be a great time saver, fun to work with, and sometimes even elegant. The
original troff version of this document was written using Qed, storing sequences like \fBQed\fP in
registers to save typing.

Well, if you’ve read this far, you must be determined, so you’re ready to learn about buffers.

2

2. Buffers
Ed has one buffer: one scratch area in which to keep text. Qed has 56, labeled by lower case
alphabetics a to z, upper case alphabetics A to Z, and, for reasons worth ignoring at this point, the
characters {, |, }, and ~. Each buffer has its own associated . (dot), $ (dollar), and filename. The
easiest way to see how they work is to cd to a directory with about ten C source files and type:

$ qed *.c

(we’ve already accomplished something which is impossible in Ed!) If you were in the Qed source
directory, you would see something like

 a .82 address.c
 b .121 blkio.c
 c .702 com.c
 d .466 getchar.c
 e .284 getfile.c
 f .119 glob.c
 g .725 main.c
 h .209 misc.c
 i .135 move.c
 j .474 pattern.c
 k .156 putchar.c
 l .38 setaddr.c
 m .128 string.c
 n .418 subs.c
 o .220 utf.c
 p .153 utfio.c
 q .36 utfstr.c

The first column is the buffer name, the second column is the value of . (dot) in the buffer, which,
on first reading in of a file is set to the value of $ (dollar) in the buffer, that is, the number of lines,
and the last column is the file name local to that buffer.

Qed is now waiting for a command. Type n

3

n
 a .82 address.c
 b 121 blkio.c
 c 702 com.c
 d 466 getchar.c
 e 284 getfile.c
 f 119 glob.c
 g 725 main.c
 h 209 misc.c
 i 135 move.c
 j 474 pattern.c
 k 156 putchar.c
 l 38 setaddr.c
 m 128 string.c
 n 418 subs.c
 o 220 utf.c
 p 153 utfio.c
 q 36 utfstr.c

and look at the output. It should be nearly identical to the above output Qed printed when it loaded
the files on start up, but now there is only one ., indicating that buffer a is the current buffer. The n
(for names) command is Qed's equivalent of ls -l.

Now do an f command. You’ll see

f
 a .82 address.c

In Qed, the f command tells you more than just the file name. Now change something in the file,
say substitute out a tab or delete an empty line, and do another f:

f
 a'.82 address.c

The prime tells you that the contents of the buffer are known to differ from the named file. Now try

bb f
 b .121 blkio.c

The bb and f can be placed on the same line, as Qed does not require a newline after most
commands. The bb says change to buffer b. Buffer b is now the current buffer, as indicated by the
dot. If you browse around the buffer for a while, you will see that it is really a world unto itself, but
changing back to buffer a by a ba command will reset you back to the original file, with dot still at
whatever line it was when you typed bb.

Why have multiple buffers? For one thing, we can copy or move text between buffers. Go back to

4

buffer a and isolate a subroutine, marking its beginning with ka and its last line with kb. Then type

'a,'b tz0

This is a regular copy command, but the z after the t tells Qed that the text is to be copied to buffer
z. The 0 is the usual address, but is interpreted in buffer z rather than the current buffer. Of course,
if there is no buffer name character after the t then Qed performs the copy command within the
current buffer. Do another n: you will see that you are currently in buffer z, and dot is set to the last
line copied. The m (move) command behaves similarly.

5

3. Special Characters (1)
Change to buffer z and clear it:

bz 0,$d

Note that line 0 is a valid address for deletion. ,d also would work here, and neither idiom
generates an error if the buffer is empty. As well, you could have typed

bz Z

The Z (zero) command unequivocally clears the buffer, even its remembered file name. Now do the
following:

ap g/^[a-zA-Z_].*(/p
 g/^[a-zA-Z_].*(/p

The append commands (a, i and c) all accept a single line of input typed on the command line, with
a space or tab separator between the command and its input. As always, a p suffix causes the
command to print its result. Buffer z now contains a possibly useful command for Qed (do you
know what it does?) which we can call up when desired.

Now read some C source into buffer b if there isn’t already some there, and try out the buffer like
this:

bb
\bz
 initio(void)
 getline(addr_t tl, int *lbuf)
 putline(void)
 blkio_r(int b, int *buf)
 blkio_w(int b, int *buf)

The sequence \bz means insert the contents of buffer z into my input stream here. The final newline
in the buffer is replaced by the one typed after the z, so that if you decided later that you wanted to
know the line numbers as well, you could tag a .= command on the end:

6

\bz .=
 initio(void)
 43
 getline(addr_t tl, int *lbuf)
 51
 putline(void)
 81
 blkio_r(int b, int *buf)
 108
 blkio_w(int b, int *buf)
 116

Although most Qed commands can be arbitrarily grouped on a line, the global g command, as in Ed,
still reads the full line for its command list, which in this case is p .=.

The above example is very important, as it uses a mixture of buffer input and terminal input to run
a command, an all-pervading concept in Qed programming.

\bz is called a special character, although in some sense it isn’t really a character at all, as it gets
completely replaced with the contents of buffer z. The \bz is interpreted whenever input is
expected, not just when commands are being read. Try the following examples:

by a
\bz
.
p
 g/^[a-zA-Z_].*(/p
ap \bz
 g/^[a-zA-Z_].*(/p
!echo "\bz"
 g/^[a-zA-Z_].*(/p
 !

The buffer could contain multiple lines, which would be handled as usual. We could, for example,
save in a buffer our example from the introduction, which merged two columnar files alongside
each other, and invoke it when desired just as we invoked the global search above. But care must
be exercised here, as the newlines in the buffer, except for the last, are also placed in the input
stream. If we were to type, with that multiline buffer in z, the command

s/x/\bz/p

mistakenly expecting that buffer z had just a single line of text, say a frequently typed word, we
would really be saying:

7

s/x/1ka
16,30 g/^/m'a\
 +ka
g/^/ .,+j/ //p

This would, of course, cause an immediate error, and since Qed always returns to terminal input
when an error occurs, no damage would be done. Sometimes, though, such mistakes can cause
strange results!

If you did try the above command, the error message would be

 ?bz2.0 ?x

Qed gives a traceback on errors. The elements of the traceback are of the form

error code format

?bXM.N

where X is the buffer name, M the line number, and N the character number of the character at
which the error was recognized. In the above example, the substitute command found a syntax
error (?x) when it read the newline, so the error occurred at the beginning (.0) of line 2 of buffer z.
If input is nested, the deepest-called buffer is printed first.

It is a good idea to pause here and look carefully over what has been covered so far, as the concept
of using a buffer to store regular files or command input interchangeably is really the heart of Qed.
Before reading on, use Qed for a while to familiarize yourself with the system of buffers, and try
out a few simple buffers for repetitive editing tasks.

Qed has a fair number of special characters for various purposes. In the rest of this section we will
look briefly at some of the simpler ones to give you some insight into how they behave. First, enter
buffer z again and append:

bz
a
\Fa
\Fb
.

and then look at what Qed has appended to the buffer:

-,p
 address.c
 blkio.c

8

The special character \Fa means the file name for buffer a, and, like all special characters, is
interpreted whenever input is expected. The special character \f is a shorthand for the saved file
name in the current buffer. Try

f junk
 z'.2 junk
w
 18
!ls \f
 junk
 !

Idioms such as

!cc \f

are very common. If your file name is long, \f can save much typing. If the file name is changed,
through an f or e command, the name actually associated with `\f' is only changed when the new
name is completely read in. Thus, you can type

e \f

to reinitialize a buffer, or

e /sys/src/cmd/\f

to edit the system version of a program. There is another special character like \f, but it is more
useful for programming. \B means the current buffer name. Try

!echo \B
 z
 !

9

4. Special Characters (2)
The easiest way to gain familiarity with the more abstruse characters is to use them in messages,
which are a special case of comments. A comment starts with a double quote ", and continues until
the first following double quote, or the end of the line, whichever is first. The line is ignored by
Qed, except that dot is set to the addressed line, if there is one:

4 " This comment sets dot to line 4

Messages are just like comments, except that the first character after the double quote is another
double quote. If the message ends with a double quote rather than a newline, no newline is printed:

bx
" hi
"" hi
 hi
"" hi there "
 hi there |<- cursor is left on this line
""Current buffer: b\B
 Current buffer: bx

This last example is mildly interesting. Can we save the command in, say, buffer x and call it back,
from any buffer, when desired?

bx Z
ap ""Current buffer: b\B
 ""Current buffer: bx
bA \bx
 Current buffer: bx

Oops! In principle, it can be done, since the current buffer is the one we are working on, not the one
being read for input. But, to put the characters \B in a buffer, we must delay their interpretation so
that they are not replaced with the buffer name until read back as command input. In most systems
on UNIX, this is done by typing an extra backslash, but things are more civilized in Qed. In Qed,
special characters are delayed, not quoted. Perhaps it’s simplest just to state the rules:

10

special characters

• \X is a special character if X is one of b, B, c, f, F, l, N, p, r, u, U, x, z, or ", sometimes (as with
\b) followed by a buffer name. It is interpreted immediately. (We will see what all these
special characters are in due course.)

• \Z, where Z is not one of the above, undergoes no interpretation at all. In particular, the
backslash is not stripped away.

• \c is reduced on scanning to \, but not re-scanned.

• \'X is equivalent to \X, but special characters embedded in \X are not interpreted.

Things are a little different in regular expressions, but let’s ignore them for the moment. These four
rules, simple though they are, define the interpretation of backslashes in Qed. Note that \\Z, where
Z is again not one of the above characters, remains \\Z, but if Z is special, say f when the saved file
name is junk.c, then \\f becomes \junk.c.

Now we know how to install a \B in our buffer: we delay its interpretation by putting a c between
the backslash and the B. (The c is for character, or (it is rumoured), for Mr. E. S. Cape, inventor of the
backslash.) The \cB will reduce to a literal \B when typed in:

bx Z
ap ""Current buffer: b\cB
 ""Current buffer: b\B

bA \bx
 Current buffer: bA
bB \bx
 Current buffer: bB

That’s better! Since \cc will reduce to \c, the number of c-s present is always just the number of
times the interpretation is to be delayed.

To decide how many delays are necessary, here is the list of input forms that cause characters to be
interpreted:

• terminal input

• commands or text (such as that saved in buffers) invoked using a special character

• command lines for the g, v, G, V, or h commands (g and v are the same as in Ed; we’ll see
the others a little later)

Note that characters are not interpreted when buffers are read from or written to files, or moved or
copied with the m or t commands. Experience is a great help here, so let’s look at some examples:

11

delay and substitution

• bx switch to buffer x

• s/$/\B/ appends x to current line

• s/$/\cB/ appends \B to current line

• s/$/\ccB/ appends \cB to current line

but:

delay and global

• g/xxxx/ s/$/\ccB/ appends \B to all lines matching /xxxx/

appends \B to all lines with xxxx; the extra c is because the command is in a global command string.
Let’s say we want to change all the \n-s to be \n\t. There are two ways:

,s/\n/\n\t/
" equivalent to
,s/\cn/\cn\ct/
" or
g/\n/ s/\n/\n\t/

No delays are necessary because \n and \t are not special characters, but delaying them once
makes no difference: the \cn just becomes \n, anyway. (Warning: \n has special meaning in the
replacement text of a substitution in U. of T. Ed.)

While we’re dealing with globals, it is a good time to introduce the \N special character. It means,
simply, a newline, and is useful primarily because we can delay it in the usual way. Commands, such
as r, which deal with filenames, must often be followed by a newline, but can be dealt with using \N
in globals. The Ed sequence

g/xxxx/ r\
.=

can be put all on one line in Qed:

g/xxxx/ r\cN .=

The newline is delayed. In original version 6 Ed, it is impossible to globally substitute a newline into
lines, but it’s straightforward (by Qed standards!) in Qed:

12

g/xxxx/ s//\\cN/p

The \\cN is a backslash followed by a delayed newline. The \cN becomes \N when scanned by the
global g command, and then becomes a newline when (re-)read for each s substitution. In Qed (and
U. of T. Ed) we could also do this by the functionally slightly different

g/xxxx/ s//\\
/p

[Do you see the difference?].

Backslashes in general are handled more reasonably in Qed than in other UNIX programs. Because
special characters are delayed rather than quoted, the number of characters required to insert a
special character, with interpretation delayed n times, is just n+2 or n+3, rather than exponential in
n. A troff line with 31 backslashes, a not-unheard-of occurrence, would in Qed have a single
backslash followed by five c characters. (And would be much easier to understand, text edit, and
debug!)

In particular, Qed handles backslashes differently from Ed. As mentioned earlier, the Ed command

s2/"/\\n"/p

is simply

s2/"/\n"/p

in Qed, because \n is not a special character. There are, however, characters which are not “special”
in the sense we are using here, but are “magic” in that they have non-literal meaning. The most
obvious are characters such as . and $ in regular expressions, which must be quoted with a
backslash to remove their special meaning and make them literal. (It becomes clear after using
Qed, or even Ed, for a while that all the magic characters in regular expressions and the like should
require a backslash to become “magic”, rather than literal, but the current choice is too wired-in to
the minds of most Ed users to be changed now.) Because they are not special characters, their
interpretation need not be delayed: they only mean something to the s substitute command. None
of the magic characters in the substitution

s/\(\.*\)xxx$/\1/

require delaying when typed in or run from a global command:

g/xyz/ s/\(\.*\)xxx$/\1/

13

Exercise

Is the following command the same as the above substitution?

s/\c(\c.*\c)xxx$/\c1/

Why or why not? Is the following the same as the global substitution?

g/xyz/ s/\c(\c.*\c)xxx$/\c1/

Try it to test your answers.

Because of these magic characters, two backslashes in a row \\ mean a single backslash \ in regular
expressions; otherwise it would be impossible to substitute in a real backslash before a magic
character:

a abc xyz def
s/xyz/\\&/p
 abc \xyz def
up
 abc xyz def
s/xyz/\\\&/p
 abc \& def

What about sequences like \\B? Well, \B is not a character at all, but a special character (sorry for
the terminology) since it is immediately, at the lowest level of input, replaced by the current buffer
name. Since \\ is not a special character, and has non-literal meaning only when found between
regular expression delimiters, the substitute command itself never sees the second backslash. All
interpretation of special characters is done before the substitute command sees them. If the current
buffer is buffer a, then

s/\\B/x/

does exactly the same thing as

s/\a/x/

Also, because Qed next converts \\ to \ in regular expressions,

s2/"/\\n"/p

is the same as

14

s2/"/\n"/p

since \n is not a special character.

Qed saves the last used regular expression and replacement text used in an s or j command, so that
they can be called back using \p (for pattern) and \r (for righthand side). \p is handy when you want
to change the saved pattern. If, for example, you start searching for proc() and want the
declaration, but find there are very many usages of proc(), it is simple to find an occurrence of
proc() at the beginning of a line:

/proc()/
 x=proc();
//
 x=proc()*2;
/^\p/
 proc(){

\p is of somewhat limited usefulness, as the null regular expression // is essentially the same as
/\p/; but \r provides a new convenience. Browsing through text doing repetitive substitution is
simplified considerably by using \r :

s/apples/mangos and pears/p
 I ain't got no mangos and pears
//
 your mother's apples smelled like they were
s//\r/p
 your mother's mangos and pears smelled like they were

There is a danger with \p and \r : if they contain delayed special characters, each usage of \p or \r
removes one delay. If the current file name is wylbur.ms, it may be difficult to deal with troff font
changes:

p
 editors such as Wylbur are so
s/Wylbur/\cfBWylbur\cfP/p
 editors such as \fBWylbur\fP are so
//
 Wylbur is also no good for
s//\r/p
 wylbur.msBWylburwylbur.msP is also no good for
" Oops

This is the sort of trouble which the \' special character can circumvent. \'r means the usual \r,
but with special characters inside uninterpreted. If we had used it above, things would have worked
properly:

15

p
 editors such as Wylbur are so
s/Wylbur/\cfBWylbur\cfP/p
 editors such as \fBWylbur\fP are so
//
 Wylbur is also no good for
s//\'r/p
 \fBWylbur\fP is also no good for
" Much better

\r is also handy for fixing a certain class of mistakes:

p
 textp=get(a->text.fdes);
s/text/tbuf/p
 tbufp=get(a->text.fdes);
" Oops again
 textp=get(a->tbuf.fdes);
" Got it!

The Qed idiom us2//\'r/p undoes (u) what you just did wrong, then substitutes (s) again (//) on the
second (2) match in the line.

Now, as an exercise, use Qed for a while until you feel comfortable with the use of backslashes. If
you find them confusing, work with Qed, doing fancy things if you feel up to it, until the confusion
disappears. What follows will be much stranger …

16

5. Special Characters (3)
Now that we’ve established the ground rules, we can begin to use some of the fancier stuff in Qed.

The special character \l (for line) returns a line of text from standard input, usually the user at the
terminal. In other words, if, say, input is coming from a buffer, then the input will be temporarily
redirected to come from the terminal. The terminating newline is stripped away. Since it is
interpreted immediately (being a special character), \l is rarely of value except when delayed.
Nevertheless, let’s look at how it behaves in immediate mode:

""\lMessage\N
 Message
""\lMessage

 Message
""\lMessage
s of words
 Messages of words

The extra newline, whether provided by the \N, or by a typed second carriage return, is necessary
because the \l strips its terminating newline away, but the comment ("") command is looking for a
newline itself in order to terminate.

[Some questions to consider: If \bx is used instead of \l, the second newline is not required. Why?
In the last example above, which characters are returned by \l? What is the origin of the others, if
any? What would the above examples do if the comments were terminated with a double quote?]

Well, \l is clearly of little use if not delayed, but it is important to understand how it behaves.

An early version of U. of T. Qed had only lower case buffer names, and when the names { through ~
were added it was necessary to go through the manual changing some of the instances of `z' into
`~', but not all of them. The following single line made the job very simple:

g/`z'/ p ""replacement:" s//`\cl'/p

Each line (g) with a `z' (/`z'/) is printed (p), the user is prompted for the replacement
(""replacement:"), and the response (\l) — either a z or a ~ in our case — is substituted (s//`\cl'/).
The single delay ensures that g places a literal \l in the substitution string, which is then
interpreted when each call to the substitute command builds its replacement (right-hand side) text.
This sort of operation can also be performed using an x command driven by a global, but Qed can
be programmed to do most of the work.

Here’s another example:

17

bz ,d
ap ""Comment:\cl" s|$| /* \cl */|p
 ""Comment:\l" s|$| /* \l */|p

On any line which invokes this buffer with a \bz, the first \l in the comment will “eat” any input
remaining on the line after the \bz (and inserts it into the comment command ("") where the first \l
appears, namely after the :. Perhaps not very useful!).

ba a c.code;
\bz
 Comment:stylish ①
 c.code; /* stylish */

a more.code;
\bz foobar
 Comment:foobarstylish ②
 more.code; /* stylish */

① Prompt is Comment:, user types stylish

② Prompt is Comment:foobar (sic!), user types stylish

(Also, of course, if what the user typed at the prompt contains the character |, problems will occur.)

Now, if we intend to be able to type our C comment text on the same line as the invocation of the
buffer, as if passing it as an argument, we want neither the Comment: message nor the extra \l which
clears the input line. Assuming buffer z still contains our commenting program, let’s edit out the
Comment:\l prompt, and try it again:

bz s/".*" //p
 s|$| /* \l */|p
ba a yetmore.code;
\bzstylish
 yetmore.code; /* stylish */

This latter form is likely more useful, as it can be called from a global (the previous version could,
but required the user to type extra newlines). For example, to comment all occurrences of a
variable named var:

g/\{var\}/ p \cbz

Each line is printed, and the user’s response is appended as a C comment. No extra \l is needed at
the end to clear the input line as the g already reads the line up to and including the terminal
newline. Thus the single \l in the s command in buffer z returns the next line typed in. Note that
the \bz command is delayed so that it is interpreted for each selected line.

We could alternatively have set up our z buffer so that the \l itself was delayed, using \cl instead.

18

The buffer could then be invoked (in a global command) as \bz, without the delay.

In effect, then, the c in the original buffer call \cbz above acts to delay the \l. If the buffer had only
literal text, no delay would be necessary. Our choice of where to put the delay was made by wanting
the buffer to be invocable directly from the keyboard.

Just for the record, note that we can achieve the effect of \cb above by typing \'b, although the
manner in which it works is quite different.

Although these examples are somewhat low-key, they do begin to show how the parts of Qed fit
together. Later, we will see how the \l can be used to control execution of commands.

19

6. Registers
Qed has 56 registers, with the same names as the buffers: a to z, A to Z, {, |, }, and ~. Buffers and
registers are otherwise unrelated. The registers are used to store simple text and short command
sequences. In fact, most of the command buffers we have created so far would be better suited to
storage in registers; buffers are generally used for storage of file text proper and multiline
command sequences. The two main advantages of using registers to store text are: they can be set
and manipulated without leaving the current buffer, and they do not appear in the output from n
commands, which is significant because a user may typically have twenty or more defined
registers.

Registers are manipulated with the z (for zdring!) command. The character after the z is the name
of the register being operated on, and the next character is an operation code. The most
straightforward operations are assignment (:) and printing (p):

za:procrastination
zap
 procrastination

The string being assigned to the register is terminated by a newline. If a newline is to be embedded
in the register, \N provides the cleanest mechanism:

za:line1\cNline2
zap
 line1\Nline2
a
\za
.
-,p
 line1
 line2

As a cconvenience, Qed also allows multi-line assignment to a register by escaping a literal newline
with \ :

za:line1\
line2
zap
 line1
 line2
a
\za
.
-,p
 line1
 line2

20

Registers are invoked in the obvious way: \za inserts the contents of register a into the input
stream. Note in the above example that the append (a) could not be done on one line, as the
embedded newline in the register would cause the first line (line1) of the register to be appended,
and the second (line2) to be interpreted as (ill-formed) command input:

zap
 line1\Nline2
a \za
 line1
 ?za10 ?x

This is another example of embedded newlines causing trouble: be careful!

There are many operation characters for registers; they are listed in full in the qed(1) manual
section. For example, we can perform a substitute operation on the contents of the register with
zas/xxx/yyy/ (the same syntax as for the substitute command s); increment and decrement the
Unicode codepoint values of the characters in the register with za+N and za-N, where N is an integer;
and do subzdring (!) operations with the take and drop functions za)N and za(N. One particularly
handy form is

register set to match

za/regular expression/

which saves in register a the string in the current line which matches the regular expression. There
are several other register operations we will introduce when required.

These operations are quite straightforward; we will see them all used when we start to program
Qed.

Registers can also be manipulated numerically. This is indicated by the # (for number) operation:
za#... . The text following the # is then interpreted specially. Decimal numbers (integers) stand for
themselves, and numeric assignment to the register is :. So:

za#:42
zap
 42
za#:-42
zap
 -42

In this numeric-register context, the letters a, r, n, N, p and P have special meanings. For example p
means print the current value of the register. We will look at a and r shortly. The rest are described
in the qed(1) manual. We can chain numeric operations together (without spaces):

21

za#:42p
 42
za#:-42p:99p
 -42
 99
zap
 99

In the last example, -42 is assigned (:-42) to a, then the current value of a is printed (p), then 99 is
assigned (:99) to a, and the current value of a is again printed. Register a contains 99 at the end of
the numerical context.

In this numeric context, the value of the register can be updated by one of the arithmetic operations
+, -, *, /, and %, which have their familiar C language meanings:

za#:1
za#+1p
 2
za#*2p
 4
za#*2+1p
 9

Numeric-register context ends at the first character which is invalid in a numeric-register context,
or the first newline, whichever comes first. When numeric-register context ends, the entire z…
register command ends, and Qed will start processing any remaining characters on the line as
regular Qed commands. This can have some bizarre side-effects:

ba Z
a foo.bar;
za#:99p
 99
za#:99 p
 foo.bar;

In za#:99 p, the space (after the 99) is not a valid character in numeric-register context, so it
terminates the za#:99 command. The remainder of the line (` p`) is then interpreted as a regular
Qed command (namely, print the current line), which it duly does.

It is an error (?#) to try to perform numeric operations on a register which does not contain a
(possibly negative) decimal integer:

za:44moose
za#*2
 ?#

22

The main difference between zap and za#p is semantic. In zap, the contents of register a are
interpreted as a string, and the (string-)register operation p prints the string held in a. In za#p, the
contents of register a are interpreted in numeric context, and the numeric-register operation p
prints the (numeric) value in a. In practice, the outcome of zap and za#p is the same if a contains a
decimal integer.

Perhaps the most important use of numeric-register operations is in addressing. The numeric-
operation character a causes the register to receive the line number of the address of the z
command:

$za#a

assigns to register a the line number of the last line ($), i.e. the number of lines in the current buffer;
and

/xxxx/za#a

saves in za the address of the first forward occurrence of xxxx.

The r operation character (for range) stores the first given address in the named register, and the
second address in the register whose name is lexically one greater:

1,$ za#r
,za#r

Both put 1 in register a and the value of $ in register b. Neither a nor r changes the value of dot.

These operations are usually used to pass addresses to an execution buffer: if the first line of a
buffer is

za#r

then if the buffer is invoked as, say,

-5,.\bz

then registers a and b contain the addresses of the first and last lines of the range to be operated on
by the buffer.

Numerical operations are also frequently useful in text editing, such as when generating defined
constants for a table:

23

a
read
write
open
close
creat
.
" capitalize
?read?,.s/.*/^/p
 CREAT
za#:0
?READ?,.g/^/s/.*/#define & \cza/p za#+1
 #define READ 0
 #define WRITE 1
 #define OPEN 2
 #define CLOSE 3
 #define CREAT 4

The ^ (caret) character in the right hand side of a substitute behaves like &, but flips the case of
ASCII alphabetics in the matched string.

24

7. Control Structures
The most commonly used control structure in Qed is certainly the global command, g, which is
remarkably powerful and versatile, as the previous example demonstrates. The ability to place
several commands on a line, and the simplicity of \N, make globals even easier to use in Qed than in
Ed.

Along with the concept of line-by-line execution goes that of buffer-by-buffer execution, which is
provided in Qed by the globuf commands G and V. They are quite simple to use: their format is
identical to the regular globals g and v, but the regular expression is used to match the output
which would be produced by an f command in each buffer. Only buffers which contain text or
have a remembered file name are tested for a match. If a buffer matches the regular expression,
the command list is executed in that buffer. For example,

G/.'.* ./w

writes out (w) all buffers which have been modified since last written. That is, all buffers which the
f command reports with a prime (') after the buffer name. The white space in the above example is
a tab, which is the actual delimiter used by the f (and n) commands between the number of lines in
the buffer and the file name. Here’s a fancier example:

G/./ g/thing/ ""\cB \cf: " p

It takes all non-null buffers (G/./), and for each one it looks for occurences of thing (g/thing/).
Whenever it finds one, it prints out (""…") the buffer (\B), the file name (\f), and line (p). It’s a bit
like a super-grep, or Gregrep.

Qed has a loop control structure, the h command (for h-until!). h, like g, takes a line of commands
and executes it repeatedly. It has four forms:

loop

• hN executes the line N times

• ht executes the line until the truth flag is true

• hf executes the line until the truth flag is false

• ha (for always) executes the line forever, or until an error

Although the loop is an until,

no-op

h0 p

is guaranteed to execute zero times. An infinite loop can be halted by sending Ctrl+C from the

25

terminal.

The truth flag is set by substitutions, and comparison operations in registers. When a register is
compared to some value, the truth flag is set according to the success of the comparison. When a
substitution is made, the truth flag is set if a substitution was performed. As a simple example, say
you have prepared a letter to be sent to someone, using Qed, only to find that the erase character is
a backspace, not # as you had been using. To fix the problem,

g/^/ hf s/.#//

Note that huntil-s can be run inside globals, and, in fact, can be nested arbitrarily deep. Globals can
also be run from huntils; the only restriction is that globals cannot be called from globals, as Qed
can only mark a line for a global once. Similarly, globufs cannot be called from globufs.

Exercise

Change the example where z-s were replaced by ~-s so that it works properly when there is
more than one z on a line.

As in globals, huntils stop the scan of the command sequence at the first newline. To build an
alphabet in register A:

za:a
zA:
h26 zAs/$/\cza/ za+1
zAp
 abcdefghijklmnopqrstuvwxyz

Note that Qed code is not always easy to read! If you happen to know that the character which
precedes a in Unicode is back-quote (`), you could also build the alphabet with:

za:`
zA:
h26 za+1 zAs/$/\cza/
zAp
 abcdefghijklmnopqrstuvwxyz

And now, register a could also be used in auto-increment mode to simplify things further:

za:`
zA:
h26 zAs/$/\cz+a/
zAp
 abcdefghijklmnopqrstuvwxyz

26

The + between the special character \z and the a in the register call causes the values of the Unicode
codepoints of the character(s) in a to be incremented before being placed in the input stream:

za:moose
""\z+a
 npptf

Auto-decrements are also possible (\z-a) as are numerical increments and decrements (\z#+a and
\z#-a). Only auto-increments of +1 and auto-decrements of -1 are possible.

As a less frivolous example (one that was used in writing an earlier version of this tutorial), a huntil
makes it simple to convert, say, the troff command .ul 5 to five .ul-s, one after each affected line:

g/^\.ul [0-9]+/ zn/[0-9]+/ zn#-1 s/ [0-9]+// h\czn +a .ul

It looks horrible, but it works, and can save much trouble if there are (as in the tutorial) twenty or
more places where the fix needs to be made. (The + character in regular expressions is like *, but
guarantees at least one match.)

Of course, until familiarity with Qed is developed, the mental effort required to write a line like this
and have it work is probably considerably greater than the physical effort required to type in the
changes individually. Even for beginning users, though, saving the complicated patterns, and
commands such as ap .ul in registers would make the job much more pleasant.

Again, care must be taken when invoking registers or buffers in huntil-s:

h20 \bz
" or "
h20 \cbz

will likely not do what is expected if buffer z contains more than one line.

The other major new control structure in Qed is the y command (for yump; think of jump
pronounced with a Swedish accent). The syntax is:

jump

y[t|f][N|o|'label|`label]

which translates as follows: If the t or f is present, jump only if it matches the truth flag; otherwise
jump unconditionally. The N, if present, is a number, and is interpreted as a line number in the
current executing buffer, which becomes the next line read for commands. An o (for out) causes the
current input source, such as a global command string or buffer, to be terminated. If the input
source is a buffer, the effect is to return from the buffer; if a global, the execution of the global (or
huntil) is stopped. For example,

27

za#:1
h50 za#+1 za#>20 yto
zap
 21

executes 21 times, leaving register a set to 21.

The forms

conditional jump forward to label

y[t|f]'label

and

conditional jump backward to label

y[t|f]`label

are similar to y[t|f]N, but the line to which control is transferred is the first line found which
begins with the comment "label, searching forward in the buffer in the case of y[t|f]'label; or
backward in the buffer in the case of y[t|f]`label (where the operation character is a back-tick).
Initial blanks and tabs on the line before the comment character " are ignored, and the scan of the
label stops at the first blank, tab, newline or double quote. If the first character after the double
quote is a space, tab, newline or double quote, the label is null and can never be matched. If no
matching label is found in the executing buffer, execution resumes at the first character after the
label in the yump command. Note that the label must be matched exactly; it is not interpreted as a
regular expression.

There are a few non-trivial small examples which illustrate the use of yumps, but they will be used
later on in the tutorial. For the moment, a remark on style: clearly, with only a goto, flow of control
in Qed can become messy if care is not taken. It is recommended that yump-s only be used in easily
identifiable forms such as if … then … else …:

if <condition> then … else …

<condition> yf'else
 ...
y'fi
"else
 ...
"fi

and, do … until …

28

do … until <condition>

"do
 ...
 <condition> yf`do
"od

or, while … do …

while <condition> do …

"{
 <condition> yf'}
 ...
 y`{
"}

One particularly useful form of labeled yump-s is a switch statement based on a line of input from
the user. This mechanism makes command interpretation very simple. It is essentially a fancy
switch statement:

switch

y'X\l
"default:
 ...
 yo
"Xcase1
 ...
 yo
"Xcase2
 ...
 yo
...

One other form of yump exists; it is intended primarily to skip the rest of a global or huntil
command sequence, without stopping the execution completely. Its form is simply yt, or yf. When
invoked, it jumps over the current input source up to and including the next newline. It can also be
used as a shorthand in buffers, but such usage is discouraged.

29

8. Calling the Shell
Qed has three methods of calling the Shell aside from the ! (bang) command: crunch (<), zap (>), and
pipe (|). All of these commands cause the UNIX commandline they last invoked to be stored in
register U. This commandline can be recalled by doubling the command character, as if the
command \'zU was issued:

!echo fun
 fun
 !
zUp
 echo fun
!!
 fun
 !

You can even extend the saved commandline:

!! | wc -c
 4
 !
zUp
 echo fun | wc -c

And edit it, just like any other register:

zUs/fun/funny/
!!
 6
 !
zUp
 echo funny | wc -c

Crunch (<) takes the standard output from the Shell command and reads it into the current buffer,
as if the output from the Shell command had been redirected to a temporary file, which is then
read in with an r command. Like the r command, < takes an optional address which specifies the
line (defaulting to $) at which the text is to be read in. (As above, the UNIX command last executed
can be reinvoked, as a crunch, with <<.)

< ls
 !

appends a list of the files in the current directory to the end of the buffer.

One very common usage of the crunch command is to create a to-do list, by a command such as

30

< grep "FIX ME!" *.c
 !

or using a buffer as a sort of checklist by capturing diagnostic output from a compiler, say:

bz Z
< cc -c *.c | tee /dev/tty
 ... diagnostic messages ...
 !

saves the listing of the compile errors so you can let cc run through everything before fixing typing
mistakes, etc.

Zap (>) is to crunch as w is to r: it writes out the contents of the addressed lines (defaulting to the
entire current buffer) as standard input to the Shell command. It is can be used to send e-mail. The
e-mail can be prepared in a buffer, edited as desired, and then sent easily by

> mail joe
 !

or even

> nroff | mail joe
 !

Zap and crunch work nicely together. We can perform an interactive file-delete function, (like the
ancient dsw command) using crunch to read the files in, modifying the list as appropriate, and
sending it out to (another ancient command) args:

< ls
 !
... editing commands ...
> args rm
 !

(args was a command that took each line on its standard input and made it an argument to the
command, which was then exec-ed in the normal manner.)

The following commands can initiate the construction of a dependency-list file for make:

31

<grep "#include" *.c
 !
,s/:#include[]"/ //
,s/"$//p
 utfio.c qed.h

At U. of T., the Shell takes a -e option which tells it to echo on the diagnostic output the commands it
is executing, which works nicely with zap:

a
command1
command2
command3
.
> sh -e
 % command1
 % command2
 % command3
 !

In short, the crunch and zap commands are used very frequently.

The pipe command (|) is very similar to crunch. Whereas crunch takes a single address, and inserts
the standard output of the commandline at that address, pipe takes an address range, and it
replaces the addressed range with the standard output of its commandline. The default address
range for pipe is the entire buffer (1,$), so the command < ls will append a directory listing to the
current buffer, but the command | ls will replace the contents of the buffer with the directory
listing.

32

9. Programming (1)
Now that we’ve seen all the primitives, we can begin using buffers and registers to build more
sophisticated commands. The first step is to assemble a few useful command sequences in registers.
Harking back to our function-declaration-finding buffer in Section 3, define register f (for function):

zf:?^[a-zA-Z_].*(?
zfp
 ?^[a-zA-Z_].*(?

As a global search, the regular expression /^[a-zA-Z_].*(/ found all function declarations,
provided, of course, that the usual paragraphing style is used.

Exercise

Write another definition to perform this function which uses the beginning of identifier (\{)
metacharacter.

Now, with the regular expression enclosed in ?…?, register f finds the first previous function
declaration. This seems like an odd concept at first, but works well. For example, to see which
function’s source is being browsed:

\zf
 function(x)

Or, to find the declaration of a local variable:

p
 variable=0;
\zf/variable/
 int variable;

(This works by searching back to the closest previous function definition using the saved command
(\zf) and then searching forward for the first occurence of the name variable with /variable/.)

To print out to the line printer the listing of the function currently being browsed:

\zf, /^}/ > lpr

There are fancier things, too. If we want to know which subroutines call proc(), we can again use
\zf:

33

g/proc()/\zf
 func1(x)
 func2(y)
 func3()

After using macros like \zf for a while, they become familiar to the point that they become
idiomatic, a part of the Qed language. To help the user develop a personal working environment,
Qed provides a simple mechanism for initializing. Typing (to the Shell)

$ qed -x qfile file1 file2

causes Qed to load the file named qfile into buffer ~ (tilde) and execute it, before reading in the
files to be edited (file1, file2), and beginning the normal editing session. Typically, the startup file
is used to initialize options and registers; it might contain something like:

qfile listing

""Qed
zc:s|$| /* \cl */|p
zf:?^[a-zA-Z_].*(?
b~Z " destroy buffer after execution

which prints a message (Qed); defines a couple of handy registers (zc and zf); and obliterates itself
(b~Z). If no -x option is given when Qed is invoked, Qed will try to load the file named by the (Shell)
environment variable QEDFILE into register ~, and run that instead. If the variable QEDFILE is
undefined then no startup file is loaded.

Browsing through the startup files of a few experienced Qed hacks, a few interesting things come to
light. One simple but rather pretty option was

ob""\cx1a"+p

Character \x1A was a reverse line-feed on most of the U. of T. terminals; The browse option (ob)
defines a special register which is executed, if defined, when a simple newline is typed at the
terminal, rather than doing the default +p (print next line). Printing a reverse line-feed before the +p
means that no empty lines appear on the screen when browsing through text.

On a modern terminal the equivalent ANSI escape sequence version would be:

ob""\cx1b[F"+p

It is sometimes useful to set the browse register to something like +b for easy paging through text,
or to P or L, which cause the line to be displayed in the format of p or l, but with line numbers at the
beginning of the line:

34

22i Line 22
p
 Line 22
l
 Line\t22
P
 22 Line 22
L
 22 Line\t22

These other display formats are also sometimes handy in global searches:

g/proc()/ \zf P
 104 func1(x)
 118 func2(y)
 221 func3()

Another nice register to have tucked away (as it is above) is the C-commenting command we saw
earlier:

zc:s@$@ /* \cl */@ p

We can call it up when desired:

p
 bizarre();
\zc(A Kludge)
 bizarre(); /* (A Kludge) */
g/xxxxx/ p \czc
 yyy xxxxx yyy
needles
 yyy xxxxx yyy /* needles */
 zzz xxxxx zzz
haystacks
 zzz xxxxx zzz /* haystacks */
...

The following register definition allows the user to find a buffer by its file name:

zb:G/\cl/ f\cN
\zbfile
 g'.34 file.c

We don’t even need to type the suffix .c!

35

Here is a rather complicated, but conceptually simple, register, \zs (for search), which globally
searches for a pattern in all the buffers from a through z, and leaves dot at the last occurrence
found. For readability, from here on, we will usually list the contents of a register with real
newlines in place of the \N-s, or the escaped newlines, and without the delays to special characters,
that would be necessary when actually assigning the program to a register. Compare what you
would have to type at the keyboard to assign this program to register s, with the listing that follows!

writing to zs at the terminal (with escaped newlines)

zs:zB:\cB\
zP:\cl\
zI:`\
h26 zI+1 b\cczI $zD#a=0 yt g/\czP/ ""\ccB:" P zB:\ccB\
b\czB

Or worse (this is all on one line!):

writing to zs at the terminal (with delayed newlines)

zs:zB:\cB\cN zP:\cl\cN zI:`\cN h26 zI+1 b\cczI $zD#a=0 yt g/\czP/ ""\ccB:" P
zB:\ccB\cN b\czB

Versus a comparatively sane listing:

zs program listing

zB:\B
zP:\l
zI:`
h26 zI+1 b\czI $zD#a=0 yt g/\zP/ ""\cB:" P zB:\cB
b\zB

But what does all this mean !? One step at a time:

36

zs program walk-through

• zB:\B sets register B to the current buffer name;

• zP:\l sets register P to the rest of the commandline (i.e. the user-supplied pattern; if there
were special characters in the pattern, we would probably have to delay them once more
than usual to achieve the desired result.)

• zI:` sets register I, a counter, to the character immediately prior to a in Unicode.

The next line does all the work, and reads something like:

• h26 for 26 iterations do

◦ zI+1 increment I (iterates over the alphabet)

◦ b\czI switch to (new) buffer \zI

◦ $zD#a set D to the address of the last line of the buffer

◦ =0 test for D=0 ?

◦ yt if (D=0) is true then skip the rest of the line, resuming the next iteration

◦ g/\zP/ else for every line matching the given pattern \zP do

▪ ""\cB:" print the current buffer name and a colon

▪ P print the matched line, with line number

▪ zB:\cB set register B to the current buffer name

Finally, the last command

• b\zB switch to buffer name in register B.

After execution, zB contains the last buffer name in which a match was found, and Qed
automatically keeps track of the line number on which the match was found. The last line of zs
therefore changes back to buffer \zB, which leaves dot at the last line printed, similar to the
behaviour of g/xxx/p.

Got that?

Make sure you understand how the s register operates, as it utilizes many of the standard Qed
programming techniques, such as nesting a global inside a huntil.

Well, that was instructive, but rather revolting. If you understood how the search register works,
you’re doing very well, but it’s not a good example of how to program Qed, just a pedagogical one.
Here’s how to really do it:

globuf search program listing

G/^[a-z]/ g/\l/ ""\cB:" P

37

Exercise

Modify this version so that it remembers the last buffer in which a match was found.

You’ll find as you gain experience that huntil-s are rarely used, but they do have their moments.

Using the register is quite easy; just type \zs followed by the pattern being searched for:

\zs^func()
 a:86 func()
 b:102 func() {
f
 b .209 junk.c

Exercise

Set up your startup buffer to include the original definition of zs using delayed \N-s where
necessary. Is a delayed newline necessary at the end of the register? Why, or why not? (Hint:
Where does the newline at the end of the invocation line end up?) Define a second register
like s, but which executes a definable register, say e, for execute, rather than just printing the
line. You can use our one-liner version (above) that we stored in register x here. What useful
things might be put in register e?

Registers can also be used to call the Shell. Register d, defined below, calls pwd to get the current
directory, saving the result in register e, so that the user can quickly return after changing working
directory.

zd:ovr zB:\cB\cN bX <pwd \cN ze. d b\czB ovs zep zB:

This definition of register d is also exactly as it would appear in a startup file. The ze. command
puts a copy of the current line in register e. The delayed newlines are necessary; unpacked, the
string looks like

zd program listing

ovr zB:\B
bX <pwd
ze. d b\zB ovs zep zB:

Briefly: turn verbose mode off (ovr); save the current buffer name into register B (zB:\B); change to
buffer X (bX) and get the directory (<pwd); save it in register e (ze.); delete the line from the buffer (d);
change back to the original buffer (b\zB); turn verbose mode back on (ovs); print the saved directory
(zep); and clear register B (zB:).

38

10. Programming (2)
So far, the emphasis has been on using registers as programming elements, primarily because the
size and complexity of the problems being handled has been small enough that registers are really
the way to deal with them. Ultimately, though, more complicated problems arise and it becomes
necessary to store command sequences in buffers. In light of that, one more register definition, r
for run, will make using program buffers somewhat simpler. Called as

\zrbuffer

it reads file buffer.q, prepended by the search path stored in register q, into a scratch buffer,
executes it, and then clears the scratch buffer. Typically, register q would be set by the startup
buffer to contain something like /home/rob/q/ so

\zrcommand

runs the buffer in the file /home/rob/q/command.q. Register r is long, but linear, having no loops. As
an unpacked listing, with newlines, it looks like:

zr program listing

zL#r
z{:\l
z|:\B
ovr b{
e \zq\z{.q
ovs b\z| \b{
b{ Z
b\z|

This looks considerably more bizarre than our earlier definitions, because it follows some
conventions that have proven useful. The registers and buffers with funny names ({, |, }, and ~) are
(unofficially) reserved as scratch areas: anything you put in one is not guaranteed to stay there if
you call in an external buffer. zr uses registers { and | to hold the program name typed by the user
and the buffer the register was called from, and buffer { to hold the program. Qed itself uses
register ~ to hold the initialization code to bootstrap the startup buffer, but clears it before going to
the terminal for input. (A side effect of this is that your startup buffer can zap z~ to alter the
bootstrap procedure.)

Other conventions are that upper case registers and buffers are reserved for use by program
buffers, such as the ones we will be developing in this section; and lower case letters are reserved
for the user.

zr stores in registers L and M the addressed lines for the buffer being called (via the range operator:
zL#r). Following these conventions means that a user can call a copy of someone else’s program
buffer, for example, without worrying about which registers and buffers it uses.

39

The ovr and ovs calls in register r set the verbose flag off and on when appropriate, to suppress the
occasional character counts on i/o. The register as defined here actually works, but what we really
want is something a bit spiffier, so, let’s have \zr load a particular buffer file, which we will
describe immediately afterwards:

zr:zL#r z}:\cB\cN ovr b~e \czqrun\cN \cb~\cN b\cz}

This loads buffer ~ with the file (say) /home/rob/q/run.q. The buffer is then executed, and the user is
returned to the original buffer. The run.q buffer file contains:

run.q program listing

" Run a qed buffer `off line'
z{:\l
z{C
" the next line puts a space at the end of the register
z{$
" the next line looks for a space in the argument string
z|'{ z{[
z~#c z{)\z~ z|(\z~ z|C
" z{: command z|: argument string z}: return buffer set by zr
b{ e \zq\z{.q
ovs
b\z} \b{
" Note! ok to ZERO buffer ~ (this buffer); the line will finish executing
b{Z b~Z

The zXC command is kludgey but handy: it collapses multiple blanks and tabs in the register to
single blanks, and deletes leading blanks. The first few lines of the buffer put the command and its
arguments (if present) into registers { and |. The new register commands introduced here are:

register commands

• zx[string stores in the count the starting index of string in register x

• zy#c saves the count in register y

• zx)N takes the first N characters from the register, and discards the remainder

• zx(N drops the first N characters from the register, and preserves the remainder

Although it’s a little unfair to show these commands to you this late in the game, they didn’t really
need showing earlier on, and they are quite simple to master. The count also hasn’t shown up
before, so we’d best explain it now. It is a special place, something like the truth, which gets set to
the number of characters transferred during i/o operations; the number of substitions made during
an s command; and to other such numbers, as above. Although rarely used, it, too, has its moments.

The requested buffer is then loaded into buffer } and executed. Finally, the loaded buffer and
buffer ~ are zeroed, and run.q returns.

40

Although its coding is not particularly pretty, the power register r gives us is dramatic. It is really
part of the Qed language, since it allows the user to store many command buffers in the file system,
but get at them easily and in a mnemonic fashion. It itself employs two conventions which are
therefore ubiquitous: registers L and M hold the lines being addressed by a buffer call, and buffers {
and ~ are off-limits to command buffers. The latter point, of course, shows the weakness of a
language in which all the variables are global, but let’s ignore that theoretical issue for the moment:
Qed has many other weaknesses which are far more important!

zr is only useful if we have some buffers to drive with it. For starters, we can take our search
register and put it in a buffer (say /home/rob/q/grep.q):

grep.q file listing

" Grep for z| (possibly set by caller) in all buffers
z|=
yf'fi
 ""pattern:" z|:\l
"fi
G/^[a-zA-Z]/ g/\z|/ ""\cB:" P

A few noteworthy points occur: firstly, we can prompt the user for missing arguments. If the user
types

\zr grep expr

(notice the blanks, which are deleted by the run buffer) we can search for expr directly; but if no
expression is specified, we just ask for it.

Secondly, putting the code into a buffer means everything can be delayed one less time, which
makes it more readable, and the initialization and cleanup code is shared by all command buffers,
providing a clean and uniform interface. Also, after execution, register r returns the user to the
buffer they started in, rather than leaving them in some random place. For this example, it may or
may not matter, but in some cases it is advantageous to return ‘home’.

Here is a new example. It right justifies the addressed lines, something of mild utility, but too
special purpose to keep around as a real program. It only takes a couple of minutes, though, to
write a Qed buffer to do it, which can then be saved away:

41

rjust.q program listing

" Right justify addressed lines (default to (1,$))
zL#=\zM yf'fi
 1,$zL#r
"fi
" The white space below is a space and a tab
\zL,\zMs/^[]*//
\zL,\zMs/[]*$//
zW:0
\zL,\zM g/^/ zC#l#<\czW yt zW:\czC
zW#>35 yf zW:35
zD: |
zD)\zW
\zL,\zM s/^/\zD/
" Turn spaces into periods
zD+14
\zL,\zM s/^ ,\(\zD\)$/\1/
zD-14
\zL,\zM s/^\zD//
zL:\N zM:\N zC:\N zD:\N zW:

(Another new command (sorry!): zC#l sets register C to the length of the current line.)

This buffer illustrates how command buffers use the (zL,zM) address pair. Clearing the registers
afterwards is a good practice for program buffers to follow.

Exercise

Why is there no \N on the end of the last line?

To invoke this program on a suitable buffer full of, say, words one to a line, we save it away in
/home/rob/q/right.q and type:

42

ba " where the data is
,p
 excle
 ficatings
 criminter
 con
 explasence
 des
 ofh
 fultesibe
 shispensitment
 dedgearing
 expers
" yes, they're random words
\zrright
,p
 excle
 ficatings
 criminter
 con
 explasence
 des
 ofh
 fultesibe
 shispensitment
 dedgearing
 expers

As the Ronco man would say, “Isn’t that amazing!”

Can we do anything useful with all this power? Well, we can write a buffer un (for run or unix)
which pipes the addressed lines out to a shell command line, and replaces them in the buffer with
the output of the command. This functionality is now largely provided by the pipe command (|), but
creating an implementation of pipe in pure Qed, is itself instructive:

43

un.q program listing

" un.q -- replace addressed lines of current buffer by result
" of passing them through pipeline
" Looks in z| for pipeline; if empty, prompts & reads from terminal
" Called as addr1, addr2 \zrun; defaults to (1,$).
z|=
yf'fi
 ""<> "
 z|:\l
"fi
zL#=\zM yf 1,$zL#r
ovr
\zL,\zM > \z| > /tmp/qed
zT#t " zT gets return status from truth
\zMr /tmp/qed
!rm /tmp/qed
ovs
zT#=0 yf'else
 ""Invalid status return - lines not deleted
 y'fi
"else
 \zL,\zMd
"fi
zL:\NzM:\NzT:
""!\N

The prompt is reminiscent of crunch-zap. The yf’else tests the return status of the command, and
decides not to delete the original lines if the status was bad (i.e. non-zero). Using the \zrun (run
buffer un.q) combination, we can process the data in a buffer through any arbitrary pipeline, such
as

44

,p
 excle
 ficatings
 criminter
 con
 explasence
 des
 ofh
 fultesibe
 shispensitment
 dedgearing
 expers
\zrun sort
 !
,p
 con
 criminter
 dedgearing
 des
 excle
 expers
 explasence
 ficatings
 fultesibe
 ofh
 shispensitment

To send out only a portion of the buffer to the pipeline, the usual convention is used:

.,/ful/ \zrun sort

45

11. Final Comments
Qed is a large system, but its concepts are, for the most part, simple extensions from those of Ed.
Although it provides no new functionality in UNIX, it can greatly simplify many text-manipulation
tasks, ranging from day-to-day editing problems to production-level text processing. By striking a
harmonious balance between Qed and UNIX's other tools, the intelligent user will find Qed
powerful, flexible, easy to master, and fun!

46

12. Editor’s Notes

12.1. Remarks
The Tutorial really does assume fluency in Ed. An updated Tutorial for a modern audience should
certainly begin with an introduction to the line-oriented editing paradigm, and the basic Ed-like
functionality in Qed.

Some of the original examples are pretty anachronistic, and would have seemed less exotic to
someone sitting at a U. of T. terminal back in the early '80s. An updated Tutorial should choose
examples which would seem familiar to today’s audience. Perhaps some programs for doing
common git tasks.

The section on Registers needed a major overhaul, as the mini-languages used in register and
numeric-register operations had changed significantly.

There were surprisingly few typos in the original, quite a feat considering that many of the
examples had Qed code interspersed with troff code!

12.2. History
Originally written by Robert Pike at U. of T. in 1992.

Converted to asciidoc, edited, and updated by Sean Jensen in February 2021.

12.3. Resources
Rob Pike’s original U. of T. Qed tarball: https://github.com/arnoldrobbins/qed-archive/unix-1992

Sean Jensen’s port of Qed, including this tutorial: https://github.com/phonologus/QED

47

https://github.com/arnoldrobbins/qed-archive/unix-1992
https://github.com/phonologus/QED

	Programming in Qed: A Tutorial
	Table of Contents
	1. Introduction
	2. Buffers
	3. Special Characters (1)
	4. Special Characters (2)
	5. Special Characters (3)
	6. Registers
	7. Control Structures
	8. Calling the Shell
	9. Programming (1)
	10. Programming (2)
	11. Final Comments
	12. Editor’s Notes
	12.1. Remarks
	12.2. History
	12.3. Resources

