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Data encryption at rest is a must-have for any modern Internet
company. Many companies, however, don't encrypt their disks,
because they fear the potential performance penalty caused by
encryption overhead.

Encrypting data at rest is vital for Cloud�are with more than 200 data
centres across the world. In this post, we will investigate the
performance of disk encryption on Linux and explain how we made it
at least two times faster for ourselves and our customers!

Encrypting data at rest

When it comes to encrypting data at rest there are several ways it can
be implemented on a modern operating system (OS). Available
techniques are tightly coupled with a typical OS storage stack. A
simpli�ed version of the storage stack and encryption solutions can
be found on the diagram below:

On the top of the stack are applications, which read and write data in
�les (or streams). The �le system in the OS kernel keeps track of
which blocks of the underlying block device belong to which �les and
translates these �le reads and writes into block reads and writes,
however the hardware speci�cs of the underlying storage device is
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abstracted away from the �lesystem. Finally, the block subsystem
actually passes the block reads and writes to the underlying
hardware using appropriate device drivers.

The concept of the storage stack is actually similar to the well-known
network OSI model, where each layer has a more high-level view of the
information and the implementation details of the lower layers are
abstracted away from the upper layers. And, similar to the OSI model,
one can apply encryption at different layers (think about TLS vs IPsec
or a VPN).

For data at rest we can apply encryption either at the block layers
(either in hardware or in software) or at the �le level (either directly in
applications or in the �lesystem).

Block vs �le encryption

Generally, the higher in the stack we apply encryption, the more
�exibility we have. With application level encryption the application
maintainers can apply any encryption code they please to any
particular data they need. The downside of this approach is they
actually have to implement it themselves and encryption in general is
not very developer-friendly: one has to know the ins and outs of a
speci�c cryptographic algorithm, properly generate keys, nonces, IVs
etc. Additionally, application level encryption does not leverage OS-
level caching and Linux page cache in particular: each time the
application needs to use the data, it has to either decrypt it again,
wasting CPU cycles, or implement its own decrypted “cache”, which
introduces more complexity to the code.

File system level encryption makes data encryption transparent to
applications, because the �le system itself encrypts the data before
passing it to the block subsystem, so �les are encrypted regardless if
the application has crypto support or not. Also, �le systems can be
con�gured to encrypt only a particular directory or have different keys
for different �les. This �exibility, however, comes at a cost of a more
complex con�guration. File system encryption is also considered less
secure than block device encryption as only the contents of the �les
are encrypted. Files also have associated metadata, like �le size, the
number of �les, the directory tree layout etc., which are still visible to a
potential adversary.

Encryption down at the block layer (often referred to as disk
encryption or full disk encryption) also makes data encryption

https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://en.wikipedia.org/wiki/IPsec
https://www.cloudflare.com/learning/access-management/what-is-a-vpn/
https://en.wikipedia.org/wiki/Page_cache
https://en.wikipedia.org/wiki/Disk_encryption


transparent to applications and even whole �le systems. Unlike �le
system level encryption it encrypts all data on the disk including �le
metadata and even free space. It is less �exible though - one can only
encrypt the whole disk with a single key, so there is no per-directory,
per-�le or per-user con�guration. From the crypto perspective, not all
cryptographic algorithms can be used as the block layer doesn't have
a high-level overview of the data anymore, so it needs to process each
block independently. Most common algorithms require some sort of
block chaining to be secure, so are not applicable to disk encryption.
Instead, special modes were developed just for this speci�c use-case.

So which layer to choose? As always, it depends... Application and �le
system level encryption are usually the preferred choice for client
systems because of the �exibility. For example, each user on a multi-
user desktop may want to encrypt their home directory with a key
they own and leave some shared directories unencrypted. On the
contrary, on server systems, managed by SaaS/PaaS/IaaS
companies (including Cloud�are) the preferred choice is con�guration
simplicity and security - with full disk encryption enabled any data
from any application is automatically encrypted with no exceptions or
overrides. We believe that all data needs to be protected without
sorting it into "important" vs "not important" buckets, so the selective
�exibility the upper layers provide is not needed.

Hardware vs software disk encryption

When encrypting data at the block layer it is possible to do it directly in
the storage hardware, if the hardware supports it. Doing so usually
gives better read/write performance and consumes less resources
from the host. However, since most hardware �rmware is proprietary,
it does not receive as much attention and review from the security
community. In the past this led to �aws in some implementations of
hardware disk encryption, which render the whole security model
useless. Microsoft, for example, started to prefer software-based disk
encryption since then.

We didn't want to put our data and our customers' data to the risk of
using potentially insecure solutions and we strongly believe in open-
source. That's why we rely only on software disk encryption in the
Linux kernel, which is open and has been audited by many security
professionals across the world.

Linux disk encryption performance
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We aim not only to save bandwidth costs for our customers, but to
deliver content to Internet users as fast as possible.

At one point we noticed that our disks were not as fast as we would
like them to be. Some pro�ling as well as a quick A/B test pointed to
Linux disk encryption. Because not encrypting the data (even if it is
supposed-to-be a public Internet cache) is not a sustainable option,
we decided to take a closer look into Linux disk encryption
performance.

Device mapper and dm-crypt

Linux implements transparent disk encryption via a dm-crypt module
and dm-crypt itself is part of device mapper kernel framework. In a

nutshell, the device mapper allows pre/post-process IO requests as
they travel between the �le system and the underlying block device.

dm-crypt in particular encrypts "write" IO requests before sending

them further down the stack to the actual block device and decrypts
"read" IO requests before sending them up to the �le system driver.
Simple and easy! Or is it?

Benchmarking setup

For the record, the numbers in this post were obtained by running
speci�ed commands on an idle Cloud�are G9 server out of
production. However, the setup should be easily reproducible on any
modern x86 laptop.

Generally, benchmarking anything around a storage stack is hard
because of the noise introduced by the storage hardware itself. Not
all disks are created equal, so for the purpose of this post we will use
the fastest disks available out there - that is no disks.

Instead Linux has an option to emulate a disk directly in RAM. Since
RAM is much faster than any persistent storage, it should introduce
little bias in our results.

The following command creates a 4GB ramdisk:

$ sudo modprobe brd rd_nr=1 rd_size=4194304 

$ ls /dev/ram0 

Now we can set up a dm-crypt instance on top of it thus enabling

encryption for the disk. First, we need to generate the disk encryption
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key, "format" the disk and specify a password to unlock the newly
generated key.

$ fallocate -l 2M crypthdr.img 

$ sudo cryptsetup luksFormat /dev/ram0 --header 

crypthdr.img 

 

WARNING!

======== 

This will overwrite data on crypthdr.img 

irrevocably. 

 

Are you sure? (Type uppercase yes): YES 

Enter passphrase: 

Verify passphrase: 

Those who are familiar with LUKS/dm-crypt might have noticed we

used a LUKS detached header here. Normally, LUKS stores the
password-encrypted disk encryption key on the same disk as the
data, but since we want to compare read/write performance between
encrypted and unencrypted devices, we might accidentally overwrite
the encrypted key during our benchmarking later. Keeping the
encrypted key in a separate �le avoids this problem for the purposes
of this post.

Now, we can actually "unlock" the encrypted device for our testing:

$ sudo cryptsetup open --header crypthdr.img 

/dev/ram0 encrypted-ram0 

Enter passphrase for /dev/ram0: 

$ ls /dev/mapper/encrypted-ram0 

/dev/mapper/encrypted-ram0 

At this point we can now compare the performance of encrypted vs
unencrypted ramdisk: if we read/write data to /dev/ram0 , it will be

stored in plaintext. Likewise, if we read/write data to
/dev/mapper/encrypted-ram0 , it will be decrypted/encrypted on

the way by dm-crypt and stored in ciphertext.

It's worth noting that we're not creating any �le system on top of our
block devices to avoid biasing results with a �le system overhead.

Measuring throughput
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When it comes to storage testing/benchmarking Flexible I/O tester is
the usual go-to solution. Let's simulate simple sequential read/write
load with 4K block size on the ramdisk without encryption:

$ sudo fio --filename=/dev/ram0 --

readwrite=readwrite --bs=4k --direct=1 --

loops=1000000 --name=plain 

plain: (g=0): rw=rw, bs=4K-4K/4K-4K/4K-4K, 

ioengine=psync, iodepth=1 

fio-2.16 

Starting 1 process 

... 

Run status group 0 (all jobs): 

   READ: io=21013MB, aggrb=1126.5MB/s, 

minb=1126.5MB/s, maxb=1126.5MB/s, mint=18655msec, 

maxt=18655msec 

  WRITE: io=21023MB, aggrb=1126.1MB/s, 

minb=1126.1MB/s, maxb=1126.1MB/s, mint=18655msec, 

maxt=18655msec 

 

Disk stats (read/write): 

  ram0: ios=0/0, merge=0/0, ticks=0/0, 

in_queue=0, util=0.00% 

The above command will run for a long time, so we just stop it after a
while. As we can see from the stats, we're able to read and write
roughly with the same throughput around 1126 MB/s. Let's repeat

the test with the encrypted ramdisk:

$ sudo fio --filename=/dev/mapper/encrypted-ram0 

--readwrite=readwrite --bs=4k --direct=1 --

loops=1000000 --name=crypt 

crypt: (g=0): rw=rw, bs=4K-4K/4K-4K/4K-4K, 

ioengine=psync, iodepth=1 

fio-2.16 

Starting 1 process 

... 

Run status group 0 (all jobs): 

   READ: io=1693.7MB, aggrb=150874KB/s, 

minb=150874KB/s, maxb=150874KB/s, mint=11491msec, 

maxt=11491msec 

  WRITE: io=1696.4MB, aggrb=151170KB/s, 
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minb=151170KB/s, maxb=151170KB/s, mint=11491msec, 

maxt=11491msec 

Whoa, that's a drop! We only get ~147 MB/s now, which is more than

7 times slower! And this is on a totally idle machine!

Maybe, crypto is just slow

The �rst thing we considered is to ensure we use the fastest crypto.
cryptsetup allows us to benchmark all the available crypto

implementations on the system to select the best one:

$ sudo cryptsetup benchmark 

# Tests are approximate using memory only (no 

storage IO). 

PBKDF2-sha1      1340890 iterations per second 

for 256-bit key 

PBKDF2-sha256    1539759 iterations per second 

for 256-bit key 

PBKDF2-sha512    1205259 iterations per second 

for 256-bit key 

PBKDF2-ripemd160  967321 iterations per second 

for 256-bit key 

PBKDF2-whirlpool  720175 iterations per second 

for 256-bit key 

#  Algorithm | Key |  Encryption |  Decryption 

     aes-cbc   128b   969.7 MiB/s  3110.0 MiB/s 

 serpent-cbc   128b           N/A           N/A 

 twofish-cbc   128b           N/A           N/A 

     aes-cbc   256b   756.1 MiB/s  2474.7 MiB/s 

 serpent-cbc   256b           N/A           N/A 

 twofish-cbc   256b           N/A           N/A 

     aes-xts   256b  1823.1 MiB/s  1900.3 MiB/s 

 serpent-xts   256b           N/A           N/A 

 twofish-xts   256b           N/A           N/A 

     aes-xts   512b  1724.4 MiB/s  1765.8 MiB/s 

 serpent-xts   512b           N/A           N/A 

 twofish-xts   512b           N/A           N/A 

It seems aes-xts with a 256-bit data encryption key is the fastest

here. But which one are we actually using for our encrypted ramdisk?

$ sudo dmsetup table /dev/mapper/encrypted-ram0 

0 8388608 crypt aes-xts-plain64 



0000000000000000000000000000000000000000000000000

000000000000000 0 1:0 0 

We do use aes-xts with a 256-bit data encryption key (count all the

zeroes conveniently masked by dmsetup tool - if you want to see the

actual bytes, add the --showkeys option to the above command).

The numbers do not add up however: cryptsetup benchmark

tells us above not to rely on the results, as "Tests are approximate
using memory only (no storage IO)", but that is exactly how we've set
up our experiment using the ramdisk. In a somewhat worse case
(assuming we're reading all the data and then encrypting/decrypting
it sequentially with no parallelism) doing back-of-the-envelope
calculation we should be getting around (1126 * 1823) / (1126

+ 1823) =~696 MB/s , which is still quite far from the actual 147

* 2 = 294 MB/s (total for reads and writes).

dm-crypt performance �ags

While reading the cryptsetup man page we noticed that it has two
options pre�xed with --perf- , which are probably related to

performance tuning. The �rst one is --perf-same_cpu_crypt

with a rather cryptic description:

Perform encryption using the same cpu that IO was 

submitted on.  The default is to use an unbound 

workqueue so that encryption work is 

automatically balanced between available CPUs.  

This option is only relevant for open action. 

So we enable the option

$ sudo cryptsetup close encrypted-ram0 

$ sudo cryptsetup open --header crypthdr.img --

perf-same_cpu_crypt /dev/ram0 encrypted-ram0 

Note: according to the latest man page there is also a cryptsetup

refresh command, which can be used to enable these options live

without having to "close" and "re-open" the encrypted device. Our
cryptsetup however didn't support it yet.

Verifying if the option has been really enabled:
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$ sudo dmsetup table encrypted-ram0 

0 8388608 crypt aes-xts-plain64 

0000000000000000000000000000000000000000000000000

000000000000000 0 1:0 0 1 same_cpu_crypt 

Yes, we can now see same_cpu_crypt in the output, which is what

we wanted. Let's rerun the benchmark:

$ sudo fio --filename=/dev/mapper/encrypted-ram0 

--readwrite=readwrite --bs=4k --direct=1 --

loops=1000000 --name=crypt 

crypt: (g=0): rw=rw, bs=4K-4K/4K-4K/4K-4K, 

ioengine=psync, iodepth=1 

fio-2.16 

Starting 1 process 

... 

Run status group 0 (all jobs): 

   READ: io=1596.6MB, aggrb=139811KB/s, 

minb=139811KB/s, maxb=139811KB/s, mint=11693msec, 

maxt=11693msec 

  WRITE: io=1600.9MB, aggrb=140192KB/s, 

minb=140192KB/s, maxb=140192KB/s, mint=11693msec, 

maxt=11693msec 

Hmm, now it is ~136 MB/s which is slightly worse than before, so no

good. What about the second option --perf-

submit_from_crypt_cpus:

Disable offloading writes to a separate thread 

after encryption.  There are some situations 

where offloading write bios from the encryption 

threads to a single thread degrades performance 

significantly.  The default is to offload write 

bios to the same thread.  This option is only 

relevant for open action. 

Maybe, we are in the "some situation" here, so let's try it out:

$ sudo cryptsetup close encrypted-ram0 

$ sudo cryptsetup open --header crypthdr.img --

perf-submit_from_crypt_cpus /dev/ram0 encrypted-

ram0 

Enter passphrase for /dev/ram0: 



$ sudo dmsetup table encrypted-ram0 

0 8388608 crypt aes-xts-plain64 

0000000000000000000000000000000000000000000000000

000000000000000 0 1:0 0 1 submit_from_crypt_cpus 

And now the benchmark:

$ sudo fio --filename=/dev/mapper/encrypted-ram0 

--readwrite=readwrite --bs=4k --direct=1 --

loops=1000000 --name=crypt 

crypt: (g=0): rw=rw, bs=4K-4K/4K-4K/4K-4K, 

ioengine=psync, iodepth=1 

fio-2.16 

Starting 1 process 

... 

Run status group 0 (all jobs): 

   READ: io=2066.6MB, aggrb=169835KB/s, 

minb=169835KB/s, maxb=169835KB/s, mint=12457msec, 

maxt=12457msec 

  WRITE: io=2067.7MB, aggrb=169965KB/s, 

minb=169965KB/s, maxb=169965KB/s, mint=12457msec, 

maxt=12457msec 

~166 MB/s , which is a bit better, but still not good...

Asking the community

Being desperate we decided to seek support from the Internet and
posted our �ndings to the dm-crypt mailing list, but the response

we got was not very encouraging:

If the numbers disturb you, then this is from lack of understanding
on your side. You are probably unaware that encryption is a heavy-
weight operation...

We decided to make a scienti�c research on this topic by typing "is
encryption expensive" into Google Search and one of the top results,
which actually contains meaningful measurements, is... our own post
about cost of encryption, but in the context of TLS! This is a
fascinating read on its own, but the gist is: modern crypto on modern
hardware is very cheap even at Cloud�are scale (doing millions of
encrypted HTTP requests per second). In fact, it is so cheap that
Cloud�are was the �rst provider to offer free SSL/TLS for everyone.

Digging into the source code
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When trying to use the custom dm-crypt options described above

we were curious why they exist in the �rst place and what is that
"o�oading" all about. Originally we expected dm-crypt to be a

simple "proxy", which just encrypts/decrypts data as it �ows through
the stack. Turns out dm-crypt does more than just encrypting

memory buffers and a (simpli�ed) IO traverse path diagram is
presented below:

When the �le system issues a write request, dm-crypt does not

process it immediately - instead it puts it into a workqueue named
"kcryptd". In a nutshell, a kernel workqueue just schedules some work
(encryption in this case) to be performed at some later time, when it is
more convenient. When "the time" comes, dm-crypt sends the

request to Linux Crypto API for actual encryption. However, modern
Linux Crypto API is asynchronous as well, so depending on which
particular implementation your system will use, most likely it will not
be processed immediately, but queued again for "later time". When
Linux Crypto API will �nally do the encryption, dm-crypt may try to

sort pending write requests by putting each request into a red-black
tree. Then a separate kernel thread again at "some time later" actually
takes all IO requests in the tree and sends them down the stack.

Now for read requests: this time we need to get the encrypted data
�rst from the hardware, but dm-crypt does not just ask for the

driver for the data, but queues the request into a different workqueue
named "kcryptd_io". At some point later, when we actually have the
encrypted data, we schedule it for decryption using the now familiar
"kcryptd" workqueue. "kcryptd" will send the request to Linux Crypto
API, which may decrypt the data asynchronously as well.

To be fair the request does not always traverse all these queues, but
the important part here is that write requests may be queued up to 4
times in dm-crypt and read requests up to 3 times. At this point we
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were wondering if all this extra queueing can cause any performance
issues. For example, there is a nice presentation from Google about
the relationship between queueing and tail latency. One key takeaway
from the presentation is:

A signi�cant amount of tail latency is due to queueing effects

So, why are all these queues there and can we remove them?

Git archeology

No-one writes more complex code just for fun, especially for the OS
kernel. So all these queues must have been put there for a reason.
Luckily, the Linux kernel source is managed by git, so we can try to
retrace the changes and the decisions around them.

The "kcryptd" workqueue was in the source since the beginning of the
available history with the following comment:

Needed because it would be very unwise to do decryption in an
interrupt context, so bios returning from read requests get queued
here.

So it was for reads only, but even then - why do we care if it is
interrupt context or not, if Linux Crypto API will likely use a dedicated
thread/queue for encryption anyway? Well, back in 2005 Crypto API
was not asynchronous, so this made perfect sense.

In 2006 dm-crypt started to use the "kcryptd" workqueue not only

for encryption, but for submitting IO requests:

This patch is designed to help dm-crypt comply with the new
constraints imposed by the following patch in -mm: md-dm-reduce-
stack-usage-with-stacked-block-devices.patch

It seems the goal here was not to add more concurrency, but rather
reduce kernel stack usage, which makes sense again as the kernel
has a common stack across all the code, so it is a quite limited
resource. It is worth noting, however, that the Linux kernel stack has
been expanded in 2014 for x86 platforms, so this might not be a
problem anymore.

A �rst version of "kcryptd_io" workqueue was added in 2007 with the
intent to avoid:
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starvation caused by many requests waiting for memory
allocation...

The request processing was bottlenecking on a single workqueue
here, so the solution was to add another one. Makes sense.

We are de�nitely not the �rst ones experiencing performance
degradation because of extensive queueing: in 2011 a change was
introduced to conditionally revert some of the queueing for read
requests:

If there is enough memory, code can directly submit bio instead
queuing this operation in a separate thread.

Unfortunately, at that time Linux kernel commit messages were not
as verbose as today, so there is no performance data available.

In 2015 dm-crypt started to sort writes in a separate "dmcrypt_write"
thread before sending them down the stack:

On a multiprocessor machine, encryption requests �nish in a
different order than they were submitted. Consequently, write
requests would be submitted in a different order and it could cause
severe performance degradation.

It does make sense as sequential disk access used to be much faster
than the random one and dm-crypt was breaking the pattern. But

this mostly applies to spinning disks, which were still dominant in
2015. It may not be as important with modern fast SSDs (including
NVME SSDs).

Another part of the commit message is worth mentioning:

...in particular it enables IO schedulers like CFQ to sort more
effectively...

It mentions the performance bene�ts for the CFQ IO scheduler, but
Linux schedulers have improved since then to the point that CFQ
scheduler has been removed from the kernel in 2018.

In theory the sorting should be performed by the underlying disk
scheduler, however, in practice the disk scheduler only accepts and
sorts a �nite number of requests. To allow the sorting of all
requests, dm-crypt needs to implement its own sorting.
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The overhead associated with rbtree-based sorting is considered
negligible so it is not used conditionally.

All that make sense, but it would be nice to have some backing data.

Interestingly, in the same patchset we see the introduction of our
familiar "submit_from_crypt_cpus" option:

There are some situations where o�oading write bios from the
encryption threads to a single thread degrades performance
signi�cantly

Overall, we can see that every change was reasonable and needed,
however things have changed since then:

hardware became faster and smarter
Linux resource allocation was revisited
coupled Linux subsystems were rearchitected

And many of the design choices above may not be applicable to
modern Linux.

The "clean-up"

Based on the research above we decided to try to remove all the extra
queueing and asynchronous behaviour and revert dm-crypt to its

original purpose: simply encrypt/decrypt IO requests as they pass
through. But for the sake of stability and further benchmarking we
ended up not removing the actual code, but rather adding yet another
dm-crypt option, which bypasses all the queues/threads, if enabled.

The �ag allows us to switch between the current and new behaviour
at runtime under full production load, so we can easily revert our
changes should we see any side-effects. The resulting patch can be
found on the Cloud�are GitHub Linux repository.

Synchronous Linux Crypto API

From the diagram above we remember that not all queueing is
implemented in dm-crypt. Modern Linux Crypto API may also be

asynchronous and for the sake of this experiment we want to
eliminate queues there as well. What does "may be" mean, though?
The OS may contain different implementations of the same algorithm
(for example, hardware-accelerated AES-NI on x86 platforms and
generic C-code AES implementations). By default the system chooses
the "best" one based on the con�gured algorithm priority. dm-crypt

https://github.com/torvalds/linux/commit/0f5d8e6ee758f7023e4353cca75d785b2d4f6abe
https://github.com/cloudflare/linux/blob/master/patches/0023-Add-DM_CRYPT_FORCE_INLINE-flag-to-dm-crypt-target.patch
https://en.wikipedia.org/wiki/AES_instruction_set
https://www.kernel.org/doc/html/v4.19/crypto/architecture.html#crypto-api-cipher-references-and-priority


allows overriding this behaviour and request a particular cipher
implementation using the capi: pre�x. However, there is one

problem. Let us actually check the available AES-XTS (this is our disk
encryption cipher, remember?) implementations on our system:

$ grep -A 11 'xts(aes)' /proc/crypto 

name         : xts(aes) 

driver       : xts(ecb(aes-generic)) 

module       : kernel 

priority     : 100 

refcnt       : 7 

selftest     : passed 

internal     : no 

type         : skcipher 

async        : no 

blocksize    : 16 

min keysize  : 32 

max keysize  : 64 

-- 

name         : __xts(aes) 

driver       : cryptd(__xts-aes-aesni) 

module       : cryptd 

priority     : 451 

refcnt       : 1 

selftest     : passed 

internal     : yes

type         : skcipher 

async        : yes 

blocksize    : 16 

min keysize  : 32 

max keysize  : 64 

-- 

name         : xts(aes) 

driver       : xts-aes-aesni 

module       : aesni_intel 

priority     : 401 

refcnt       : 1 

selftest     : passed 

internal     : no 

type         : skcipher 

async        : yes 

blocksize    : 16 

min keysize  : 32 

max keysize  : 64 

https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt#mapping-table-for-crypt-target


-- 

name         : __xts(aes) 

driver       : __xts-aes-aesni 

module       : aesni_intel 

priority     : 401 

refcnt       : 7 

selftest     : passed 

internal     : yes

type         : skcipher 

async        : no 

blocksize    : 16 

min keysize  : 32 

max keysize  : 64 

We want to explicitly select a synchronous cipher from the above list
to avoid queueing effects in threads, but the only two supported are
xts(ecb(aes-generic)) (the generic C implementation) and

__xts-aes-aesni (the x86 hardware-accelerated implementation).

We de�nitely want the latter as it is much faster (we're aiming for
performance here), but it is suspiciously marked as internal (see
internal: yes). If we check the source code:

Mark a cipher as a service implementation only usable by another
cipher and never by a normal user of the kernel crypto API

So this cipher is meant to be used only by other wrapper code in the
Crypto API and not outside it. In practice this means, that the caller of
the Crypto API needs to explicitly specify this �ag, when requesting a
particular cipher implementation, but dm-crypt does not do it,

because by design it is not part of the Linux Crypto API, rather an
"external" user. We already patch the dm-crypt module, so we could

as well just add the relevant �ag. However, there is another problem
with AES-NI in particular: x86 FPU. "Floating point" you say? Why do
we need �oating point math to do symmetric encryption which should
only be about bit shifts and XOR operations? We don't need the math,
but AES-NI instructions use some of the CPU registers, which are
dedicated to the FPU. Unfortunately the Linux kernel does not always
preserve these registers in interrupt context for performance reasons
(saving/restoring FPU is expensive). But dm-crypt may execute

code in interrupt context, so we risk corrupting some other process
data and we go back to "it would be very unwise to do decryption in
an interrupt context" statement in the original code.

https://en.wikipedia.org/wiki/AES_instruction_set
https://github.com/torvalds/linux/blob/fb33c6510d5595144d585aa194d377cf74d31911/include/linux/crypto.h#L91
https://en.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/X87
https://github.com/torvalds/linux/blob/fb33c6510d5595144d585aa194d377cf74d31911/arch/x86/kernel/fpu/core.c#L77


Our solution to address the above was to create another somewhat
"smart" Crypto API module. This module is synchronous and does not
roll its own crypto, but is just a "router" of encryption requests:

if we can use the FPU (and thus AES-NI) in the current execution
context, we just forward the encryption request to the faster,
"internal" __xts-aes-aesni implementation (and we can use it

here, because now we are part of the Crypto API)
otherwise, we just forward the encryption request to the slower,
generic C-based xts(ecb(aes-generic)) implementation

Using the whole lot

Let's walk through the process of using it all together. The �rst step is
to grab the patches and recompile the kernel (or just compile dm-

crypt and our xtsproxy modules).

Next, let's restart our IO workload in a separate terminal, so we can
make sure we can recon�gure the kernel at runtime under load:

$ sudo fio --filename=/dev/mapper/encrypted-ram0 

--readwrite=readwrite --bs=4k --direct=1 --

loops=1000000 --name=crypt 

crypt: (g=0): rw=rw, bs=4K-4K/4K-4K/4K-4K, 

ioengine=psync, iodepth=1 

fio-2.16 

Starting 1 process 

... 

In the main terminal make sure our new Crypto API module is loaded
and available:

$ sudo modprobe xtsproxy 

$ grep -A 11 'xtsproxy' /proc/crypto 

driver       : xts-aes-xtsproxy 

module       : xtsproxy 

priority     : 0 

refcnt       : 0 

selftest     : passed 

internal     : no 

type         : skcipher 

async        : no 

blocksize    : 16 

min keysize  : 32 

https://github.com/cloudflare/linux/blob/master/patches/0024-Add-xtsproxy-Crypto-API-module.patch
https://github.com/cloudflare/linux/blob/master/patches/


max keysize  : 64 

ivsize       : 16 

chunksize    : 16 

Recon�gure the encrypted disk to use our newly loaded module and
enable our patched dm-crypt �ag (we have to use low-level

dmsetup tool and cryptsetup obviously is not aware of our

modi�cations):

$ sudo dmsetup table encrypted-ram0 --showkeys | 

sed 's/aes-xts-plain64/capi:xts-aes-xtsproxy-

plain64/' | sed 's/$/ 1 force_inline/' | sudo 

dmsetup reload encrypted-ram0 

We just "loaded" the new con�guration, but for it to take effect, we
need to suspend/resume the encrypted device:

$ sudo dmsetup suspend encrypted-ram0 && sudo 

dmsetup resume encrypted-ram0 

And now observe the result. We may go back to the other terminal
running the fio job and look at the output, but to make things nicer,

here's a snapshot of the observed read/write throughput in Grafana:

https://grafana.com/


Wow, we have more than doubled the throughput! With the total
throughput of ~640 MB/s we're now much closer to the expected

~696 MB/s from above. What about the IO latency? (The await

statistic from the iostat reporting tool):

The latency has been cut in half as well!

To production

So far we have been using a synthetic setup with some parts of the
full production stack missing, like �le systems, real hardware and
most importantly, production workload. To ensure we’re not
optimising imaginary things, here is a snapshot of the production
impact these changes bring to the caching part of our stack:

This graph represents a three-way comparison of the worst-case
response times (99th percentile) for a cache hit in one of our servers.
The green line is from a server with unencrypted disks, which we will
use as baseline. The red line is from a server with encrypted disks with
the default Linux disk encryption implementation and the blue line is
from a server with encrypted disks and our optimisations enabled. As
we can see the default Linux disk encryption implementation has a
signi�cant impact on our cache latency in worst case scenarios,
whereas the patched implementation is indistinguishable from not
using encryption at all. In other words the improved encryption
implementation does not have any impact at all on our cache
response speed, so we basically get it for free! That’s a win!

We're just getting started

This post shows how an architecture review can double the
performance of a system. Also we recon�rmed that modern
cryptography is not expensive and there is usually no excuse not to
protect your data.

http://man7.org/linux/man-pages/man1/iostat.1.html
https://blog.cloudflare.com/how-we-scaled-nginx-and-saved-the-world-54-years-every-day/
https://blog.cloudflare.com/how-expensive-is-crypto-anyway/


We are going to submit this work for inclusion in the main kernel
source tree, but most likely not in its current form. Although the
results look encouraging we have to remember that Linux is a highly
portable operating system: it runs on powerful servers as well as
small resource constrained IoT devices and on many other CPU
architectures as well. The current version of the patches just
optimises disk encryption for a particular workload on a particular
architecture, but Linux needs a solution which runs smoothly
everywhere.

That said, if you think your case is similar and you want to take
advantage of the performance improvements now, you may grab the
patches and hopefully provide feedback. The runtime �ag makes it
easy to toggle the functionality on the �y and a simple A/B test may
be performed to see if it bene�ts any particular case or setup. These
patches have been running across our wide network of more than
200 data centres on �ve generations of hardware, so can be
reasonably considered stable. Enjoy both performance and security
from Cloud�are for all!

https://blog.cloudflare.com/arm-takes-wing/
https://github.com/cloudflare/linux/blob/master/patches/
https://www.cloudflare.com/network/

